Skip to main content

CO2 Capture and Sequestration

  • Living reference work entry
  • First Online:
  • 335 Accesses

Glossary

Carbon capture and storage (CCS) sometimes referred to as carbon capture and sequestration:

The long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes.

CO2 capture:

The separation and concentration of CO2 from multicomponent gas streams.

CO2-enhanced oil recovery (EOR):

Injection of CO2 into depleted oil fields for the purpose of increasing oil production. Depending on geologic formations, this can result in long-term storage of CO2.

Geologic storage:

The long-term physical or chemical storage of CO2 in deep geological formations to isolate it indefinitely from the atmosphere.

Oxyfired combustion:

The burning of a hydrocarbon fuel (coal, oil, gas, biofuel) in an oxygen-rich or pure oxygen environment for generating high-concentration CO2 in flue gas.

Precombustion capture:

Separation of CO2from multicomponent gas streams that are the products of fuel conversion (e.g., gasification, methanation, or...

This is a preview of subscription content, log in via an institution.

References

  1. International Energy Agency (2018) Sustainable development scenario [Online]. https://www.iea.org/weo/weomodel/sds/

  2. IPCC (2005) Intergovernmental panel on climate change. IPCC special report on carbon dioxide capture and storage. Interlachen. https://www.ipcc.ch/

  3. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654

    Article  CAS  Google Scholar 

  4. Consoli CP, Wildgust N (2017) Current status of global storage sites. Energy Procedia 114:4623–4628

    Article  Google Scholar 

  5. MIT (2007) Future of coal in a carbon constrained world. MIT Press. http://coal.mit.edu/

  6. US CCTP (2005) US climate change technology program strategic plan. Washington, DC, 256 p. http://www.climatetechnology.gov

  7. Edmonds J, Clarke J, Dooley J, Kim SH, Smith SJ (2004) Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Econ 26(4):517–537, Special Issue EMF 19 Alternative technology strategies for climate change policy, John P. Weyant, ed

    Google Scholar 

  8. Intergovernmental Panel on Climate Change (2014) Climate change 2014: mitigation of climate change. Cambridge University Press, New York

    Book  Google Scholar 

  9. Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624

    Article  CAS  Google Scholar 

  10. Large Scale CCS Facilities (2018) Global CCS Institute. https://www.globalccsinstitute.com/projects/large-scale-ccs-projects. Accessed 2 July 2018

  11. Hossain MM, de Lasa HI (2008) Chemical-looping combustion (CLC) for inherent CO2 separations – a review. Chem Eng Sci 63:4433–4451

    Article  CAS  Google Scholar 

  12. Thambimuthu K, Soltanieh M, Abanades JC (2005) Chapter 3: Capture. In: IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Interlachen, pp 3–1, 3–114. https://www.ipcc.ch

    Google Scholar 

  13. Rao AB, Rubin ES, Keith DW, Morgan MG (2006) Evaluation of potential cost reductions from improved amine-based CO2 capture systems. Energy Policy 34:3765–3772

    Article  Google Scholar 

  14. Al-Juaied M, Whitmore A (2009) Realistic costs of carbon capture. Belfer center discussion paper 2009-08. Harvard University, 73 p. http://belfercenter.ksg.harvard.edu/files/2009_AlJuaied_Whitmore_Realistic_Costs_of_Carbon_Capture_web.pdf

  15. Hiroshi M, Hiroshi H (2000) Development of CO2 separation membranes: (1) polymer membrane. Sumitomo Electric Tech Rev 157:22–26

    Google Scholar 

  16. Meinema HA, Dirrix RWJ, Brinkman HW, Terpstra RA, Jekerle J, Kosters PH (2005) Ceramic membranes for gas separations – recent developments and state of the art. Interceram 54:86–91

    CAS  Google Scholar 

  17. Holt JK, Park G, Wang Y, Staderman M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1036

    Article  CAS  Google Scholar 

  18. Berger AH, Wang Y, Bhown AS, Castrogiovai A, Kield R, Balepin V (2017) Thermodynamic analysis of post-combustion inertial CO2 extraction system. Energy Procedia 114:7

    Article  CAS  Google Scholar 

  19. Bottoms RR (1930) Separating acid gases. U.S. Patent 1783901

    Google Scholar 

  20. The Global Status of CCS: 2017 (2017) Global CCS Institute

    Google Scholar 

  21. Engineering-economic evaluations of advanced fossil fuel power plants with carbon capture and storage. EPRI, Palo Alto 2018. 3002013869

    Google Scholar 

  22. Scientific American (2008) “Clean” coal power plant cancelled – hydrogen economy, too. http://www.scientificamerican.com/article.cfm?id=clean-coal-power-plant-canceled-hydrogen-economy-too

  23. MIT (2011) GreenGen fact sheet: carbon dioxide capture and storage project. MIT Energy Initiative. http://sequestration.mit.edu/tools/projects/greengen.html

  24. DOE-NETL (2007) U.S. Department of Energy, National Energy Technology Laboratory, Cost and performance baseline for fossil energy plants, vol 1. Bituminous coal and natural gas to electricity, Revision 1, Aug 2007

    Google Scholar 

  25. Kreutz T, Williams R, Consonni S, Chiesa P (2005) Co-production of hydrogen, electricity, and CO2 from coal with commercially ready technology, part B: economic analysis. Int J Hydrog Energy 30:769–784

    Article  CAS  Google Scholar 

  26. US DOE (2011) Innovative Texas clean coal project takes major step forward as DOE issues record of decision, press release. http://www.fe.doe.gov/news/techlines/2011/11053-Texas_Clean_Coal_Project_Moves_For.html

  27. Redman E, Fennerty K, Fowler M (2009) Mobilizing the next generation coal gasification technology for carbon capture and sequestration. In: Coal without carbon, Clean Air Task Force, pp 1–16. https://www.coaltransition.org

  28. Friedmann SJ (2009) Accelerating development of underground coal gasification: priorities and challenges for U.S. Research and Development. In: Coal without carbon, Clean Air Task Force, pp 1–1625. https://www.coaltransition.org. Solomon S et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709

  29. American Physical Society (2010) Direct air capture of CO2 with chemicals. APS, 119 p. http://www.aps.org/policy/reports/popa-reports/loader.cfm?csModule=security/getfile&PageID=244407

  30. Benson SM, Cook P (2005) Chapter 5: Underground geological storage. In: IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Interlachen, pp 5–1 to 5–134. https://www.ipcc.ch

    Google Scholar 

  31. U.S. DOE National Energy Technology Laboratory (2019) Carbon capture and storage database. https://www.netl.doe.gov/coal/carbon-storage/worldwide-ccs-database

  32. Jarrell PM, Fox CE, Stein MH, Webb SL (2002) Practical aspects of CO2 flooding. Monograph 22. Society of Petroleum Engineers, Richardson

    Google Scholar 

  33. Oldenburg CM, Stevens SH, Benson SM (2004) Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29:1413–1422

    Article  CAS  Google Scholar 

  34. Stevens S (1999) Sequestration of CO2 in depleted oil and gas fields: barriers to overcome in implementation of CO2 capture and storage (disused oil and gas fields). IEA Greenhouse Gas R&D Programme. IEA/CON/98/31

    Google Scholar 

  35. NPC (2007) Facing hard truths about energy: a comprehensive view to 2030 of global oil and gas. National Petroleum Council, Washington, DC, 442 pp. https://www.npc.org

  36. Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Manag 41:953–970

    Article  CAS  Google Scholar 

  37. US DOE (2007) Basic Research needs for geosciences: facilitating 21st century energy systems. Department of Energy Office of Basic Energy Sciences, Washington, DC, 287 p. http://www.sc.doe.gov/bes/reports/list.html

  38. UK CCS Commercial Scale Demonstration Programme (2010) Delivering projects 2–4. http://decarboni.se/sites/default/files/publications/159703/UK-carbon-capture-storage-commercial-scale-demonstration-programme-delivering-projects-2-4.pdf

  39. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years using current technologies. Science 305:986–999

    Article  Google Scholar 

  40. U. S. DOE National Energy Technology Laboratory (2019) Petra Nova Parish holdings: W.A. Parish Post-Combustion CO2 capture and sequestration project. https://www.netl.doe.gov/sites/default/files/netl-file/FE0003311.pdf

  41. U. S. DOE National Energy Technology Laboratory (2019) Archer Daniels Midland Company: CO2 capture from biofuels production and storage into the Mt. Simon Sandstone. https://www.netl.doe.gov/sites/default/files/netl-file/FE0001547-Factsheet.pdf

  42. Plains CO2 Reduction Partnership (2019) SaskPower Boundary Dam Carbon Capture Project. http://www.undeerc.org/PCOR/CO2SequestrationProjects/SaskPower.aspx?AspxAutoDetectCookieSupport=1

  43. Global CCS Institute (2018) CCS facilities database. https://www.globalccsinstitute.com/resources/ccs-database-public/

  44. Kuuskraa VA, DiPietro P, Koperna GJ (2006) CO2 storage capacity in depleted and near-depleted US oil and gas reservoirs. In: NETL 5th annual conference on carbon sequestration. ExchangeMonitor, Alexandria

    Google Scholar 

  45. Asia Society (2009) Roadmap for US-China collaboration on carbon capture and sequestration. Asia Society Press, 41 p. http://asiasociety.org/files/pdf/AS_CCS_TaskForceReport.pdf

  46. Dalhousie R, Li X, Davidson C, Wei N, Dooley J (2009) Establishing China’s potential for large scale, cost effective, deployment of carbon dioxide capture and storage. Pacific Northwest National laboratory report, PNNL-SA-XXXX, 6 p

    Google Scholar 

  47. Liu H, Gallagher K-S (2010) Catalyzing strategic transformation to a low-carbon economy: a CCS roadmap for China. Energy Policy 38:59–74

    Article  Google Scholar 

  48. IEA GHG (2005) A review of natural CO2 emissions and releases and their relevance to CO2 storage. International Energy Agency greenhouse gas R&D programme, report 2005/8. http://www.ieagreen.org.uk/

  49. Carpenter S, Koperna G (2014) Development of the first internationally accepted standard for the geologic storage of carbon dioxide utilizing Enhanced Oil Recovery (EOR) under the International Standards Organization (ISO) Technical Committee TC-265. Energy Procedia 63:6716–6729

    Article  Google Scholar 

  50. WRI (2008) Guidelines for carbon capture and sequestration, major contributing author. World Resources Institute, Washington, DC, 103 pp. https://www.wri.org

    Google Scholar 

  51. National Energy Technology Laboratory (2017) Carbon Storage Program Fact Sheet. https://www.netl.doe.gov/sites/default/files/2017-11/Program-116.pdf

  52. National Energy Technology Laboratory (2017) Best practices: monitoring, verification, and accounting (MVA) for Geologic Storage Projects. https://www.netl.doe.gov/coal/carbon-storage/strategic-program-support/best-practices-manuals

  53. CO2 Capture Project (2009) A technical basis for CO2 storage. In: Cooper C (ed) CO2 capture project. CPL Press, UK. ISBN: 978-1-872691-48-0

    Google Scholar 

  54. Friedmann SJ (2006) The ICE framework for CO2 storage site characterization. In: NETL 5th Annual Conference on Carbon Sequestration. ExchangeMonitor Publications, Alexandria

    Google Scholar 

  55. Burton EA, Myhre R, Myer LR, Birkinshaw K (2007) Geologic carbon sequestration strategies for California, The assembly bill 1925 report to the California legislature. California Energy Commission, Systems Office. CEC-500-2007-100-SD. http://www.energy.ca.gov/2007_energypolicy/documents/index.html#100107

  56. Chiaramonte L, Zoback M, Friedmann S, Stamp V (2006) CO2 sequestration, fault stability and seal integrity at teapot dome, Wyoming. In: NETL 5th annual conference on carbon sequestration. ExchangeMonitor Publications, Alexandria

    Google Scholar 

  57. Cugini A, DePaolo D, Fox M, Friedmann SJ, Guthrie G, Virden J, (2010) US-DOE’s National risk assessment program: bridging the gaps to provide the science base to ensure successful CO2 storage. International Conference on Greenhouse Gas Technologies, Amsterdam, September 2010

    Google Scholar 

  58. Hovorka SD, Benson SM et al (2006) Measuring permanence of CO2 storage in saline formations – the Frio experiment. Environ Geosci 13:103–119

    Article  Google Scholar 

  59. Streit JE, Hillis RR (2004) Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29:1445–1456

    Article  CAS  Google Scholar 

  60. Dixon T (2017) ISO CO2 storage ISO TC 265. CTS workshop. EIA, Paris

    Google Scholar 

  61. Bradshaw J, Boreham C, la Pedalina F (2004) Storage retention time of CO2 in sedimentary basins; examples from petroleum systems. Paper presented at the GHGT-7 conference, Vancouver

    Google Scholar 

  62. National Energy Technology Laboratory (2017) Best practices: RIsk management and simulation for Geologic Storage Projects. https://www.netl.doe.gov/coal/carbon-storage/strategic-program-support/best-practices-manuals

  63. Yamaguchi K, Takizawa K, Shiragaki O, Xue Z, Komaki H, Metcalfe R, Yamaguchi M, Kato H, Ueta S (2013) Features events and processes (FEPs) and scenario analysis in the field of CO2 storage. Energy Procedia 37:4833–4842

    Article  CAS  Google Scholar 

  64. Pawar RJ, Bromhal GS, Carey JW, Foxall W, Korre A, Ringrose PS, Tucker O, Watson MN, White JA (2015) Recent advances in risk assessment and risk management of geologic CO2 storage. Int J Greenhouse Gas Control 40:292. https://doi.org/10.1016/j.ijggc.2015.06.014

    Article  CAS  Google Scholar 

  65. Carroll S, Bromhal G, Richard T (eds) (2016) International Journal of Greenhouse Gas Control. Virtual Special Issue: NRAP

    Google Scholar 

  66. Newmark RA, Friedmann SJ, Carroll SJ (2010) Water challenges for carbon capture and sequestration. Environ Manag 45:651. https://doi.org/10.1007/s00267-010-9434-1

    Article  Google Scholar 

  67. DOE-NETL (2007) U.S. Department of Energy, National Energy Technology Laboratory, Power plant water usage and loss study, May 2007 revision

    Google Scholar 

  68. Aines RD, Wolery TJ, Bourcier WL, Wolfe T, Hausmann C (2010) Fresh water generation from aquifer-pressured carbon storage: feasibility of treating saline formation waters. Energy Procedia 4:2269–2276

    Article  Google Scholar 

  69. Buscheck TA, Sun Y, Hao Y, Aines RD, Wolery TJ, Tompson AFB, Jones ED, Friedmann SJ (2010) Combining brine extraction, desalination, and residual-brine injection with CO2 storage in saline formations: implications for pressure management, capacity, and risk management. Energy Procedia 4:4283–4290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhoyjit S. Bhown .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bhown, A.S., Bromhal, G., Barki, G. (2019). CO2 Capture and Sequestration. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_106-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_106-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics