Skip to main content

Non-raster Methods in Scanning Probe Microscopy

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 215 Accesses

Abstract

Scanning probe microscopy (SPM) refers to a family of technologies for probing systems with nanometer-scale features in which a probe interacts with a sample. Traditionally, images of a signal of interest are built pixel-by-pixel by rastering the probe across the sample. While simple, this method is at least partially responsible for the slow imaging times which are inherent to SPM imaging. Non-raster methods seek to improve image acquisition time by modifying this scanning process to one that is more efficient. This efficiency can be with respect to the probe trajectories, moving to patterns that are easier for scanners to follow, or it can be with respect to scanning area, increasing speed by reducing the amount of scanning to be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Anderson CM, Georgiou GN, Morrison IG, Stevenson GVW, Cherry RJ (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. J Cell Sci 101(2):415–425

    Google Scholar 

  • Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23(6):062001

    Article  Google Scholar 

  • Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Ann Rev Biophys 42(1):393–414

    Article  Google Scholar 

  • Bazaei A, Yong YK, Moheimani SOR (2017) Combining spiral scanning and internal model control for sequential AFM imaging at video rate. IEEE/ASME Trans Mechatron 22(1):371–380

    Article  Google Scholar 

  • Braker RA, Luo Y, Pao LY, Andersson SB (2018) Hardware demonstration of atomic force microscopy imaging via compressive sensing and <tex>μ</tex>-Path scans. In: American Control Conference (ACC), IEEE, pp 6037–6042

    Google Scholar 

  • Chen A, Bertozzi AL, Ashby PD, Getreuer P, Lou Y (2012) Enhancement and recovery in atomic force microscopy images. In: Excursions in Harmonic Analysis, vol 2, Birkhäuser, Boston, pp 311–332

    MATH  Google Scholar 

  • Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Measur Control 131(6):061101

    Article  Google Scholar 

  • Hartman B, Andersson SB (2018) Feature tracking for high speed AFM imaging of biopolymers. Int J Mol Sci 19(4):1044

    Article  Google Scholar 

  • Helfrich BE, Lee C, Bristow DA, Xiao XH, Dong J, Alleyne AG, Salapaka SM, Ferreira PM (2009) Combined H -feedback control and iterative learning control design with application to nanopositioning systems. IEEE Trans Control Syst Technol 18(2):336–351

    Article  Google Scholar 

  • Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, Clarkson JD, Wang C, Liu J, Salahuddin S, Ralph DC, Schlom DG, Íñiguez J, Huey BD, Ramesh R (2014) Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516(7531):370–373

    Article  Google Scholar 

  • Luo Y, Andersson SB (2015) A comparison of reconstruction methods for undersampled atomic force microscopy images. Nanotechnology 26(50):505703

    Article  Google Scholar 

  • Rana MS, Pota HR, Petersen IR (2014) Spiral scanning with improved control for faster imaging of AFM. IEEE Trans Nanotechnology 13(3):541–550

    Article  Google Scholar 

  • Teo YR, Yong Y, Fleming AJ (2016) A comparison of scanning methods and the vertical control implications for scanning probe microscopy. Asian J Control 28(2):65

    MATH  Google Scholar 

  • Tuma T, Lygeros J, Kartik V, Sebastian A, Pantazi A (2012) High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23(18):185501

    Article  Google Scholar 

  • Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1998) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67(10):3583–3590

    Article  Google Scholar 

  • Yong YK, Leang KK (2016) Mechanical design of high-speed nanopositioning systems. In: Nanopositioning technologies. Springer, Cham, pp 61–121

    Chapter  Google Scholar 

  • Yoshioka T, Matsushima H, Ueda M (2018) In situ observation of Cu electrodeposition and dissolution on Au(100) by high-speed atomic force microscopy. Electrochem Commun 92:29–32

    Article  Google Scholar 

  • Zhang K, Hatano T, Tien T, Herrmann G, Edwards C, Burgess SC, Miles M (2015a) An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Meas Sci Technol 26(3):035401

    Article  Google Scholar 

  • Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015b) A survey of sparse representation: algorithms and Applications. IEEE Access 3:490–530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean B. Andersson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Andersson, S.B. (2020). Non-raster Methods in Scanning Probe Microscopy. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100042-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100042-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics