Skip to main content

Graphics Recognition Techniques

  • Reference work entry
  • First Online:
Handbook of Document Image Processing and Recognition

Abstract

This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Almageed W, Kumar J, Doermann D (2009) Page ruleline removal using linear subspaces in monochromatic handwritten arabic documents. In: Proceedings of the 12th international conference on document analysis and recognition, Barcelona, pp 768–772

    Google Scholar 

  2. Acharyya M, Kundu MK (2002) Document image segmentation using wavelet scale-space features. IEEE Trans Circuits Syst Video Technol 12(12):1117–1127

    Article  Google Scholar 

  3. Antoine D, Collin S, Tombre K (1992) Analysis of technical documents: the REDRAW system. In: Structured document image analysis. Springer, Berlin, pp 385–402

    Chapter  Google Scholar 

  4. Boatto L, Consorti V, Del Buono M, Di Zenzo S, Eramo V, Esposito A, Melcarne F, Meucci M, Morelli A, Mosciatti M, Scarci S, Tucci M (1992) An interpretation system for land register maps. Computer 25(7):25–33

    Article  Google Scholar 

  5. Cao R, Tan CL (2002) Text/graphics separation in maps. In: Graphics recognition algorithms and applications. Lecture notes in computer science, vol 2390. Springer, Berlin/New York, pp 167–177

    Google Scholar 

  6. Chen J, Lopresti D, Kavallieratou E (2010) The impact of ruling lines on writer identification. In: Proceedings of the 2nd international conference on frontiers in handwriting recognition, Kolkata, pp 439–444

    Google Scholar 

  7. Chen Y, Langrana NA, Das AK (1996) Perfecting vectorized mechanical drawings. Comput Vis Image Underst 63(2):273–286

    Article  Google Scholar 

  8. Chhabra AK, Misra V, Arias J (1996) Detection of horizontal lines in noisy run length encoded images: the FAST method. In: Graphics recognition methods and applications. Lecture notes in computer science, vol 1072. Springer, Berlin/Heidelberg, pp 35–48

    Chapter  Google Scholar 

  9. Chiu SH, Liaw JJ (2005) An effective voting method for circle detection. Pattern Recognit Lett 26(2):121–133

    Article  Google Scholar 

  10. Dalitz C, Droettboom M, Pranzas B, Fujinaga I (2008) A comparative study of staff removal algorithms. IEEE Trans Pattern Anal Mach Intell 30:753–766

    Article  Google Scholar 

  11. Das AK, Langrana NA (1997) Recognition and integration of dimension sets in vectorized engineering drawings. Comput Vis Image Underst 68(1):90–108

    Article  Google Scholar 

  12. Davies ER (1988) A modified Hough scheme for general circle location. Pattern Recognit Lett 7(1):37–43

    Article  Google Scholar 

  13. Di Zenzo S, Cinque L, Levialdi S (1996) Run-based algorithms for binary image analysis and processing. IEEE Trans Pattern Anal Mach Intell 18(1):83–89

    Article  Google Scholar 

  14. Doermann D (1998) An introduction to vectorization and segmentation. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 1–8

    Google Scholar 

  15. Dori D (1992) Self-structural syntax-directed pattern recognition of dimensioning components in engineering drawings. In: Structured document image analysis. Springer, Berlin/New York, pp 359–384

    Chapter  Google Scholar 

  16. Dori D (1997) Orthogonal zig-zag: an algorithm for vectorizing engineering drawings compared with Hough transform. Adv Eng Softw 28(1):11–24

    Article  Google Scholar 

  17. Dori D, Liu W (1996) Vector-based segmentation of text connected to graphics in engineering drawings. In: Advances in structural and syntactical pattern recognition. Lecture notes in computer science, vol 1121. Springer, Berlin/New York, pp 322–331

    Chapter  Google Scholar 

  18. Dori D, Liu W (1999) Automated CAD conversion with the machine drawing understanding system: concepts, algorithms, and performance. IEEE Trans Syst Man Cybern Part A: Syst Hum 29(4):411–416

    Article  Google Scholar 

  19. Dori D, Pnuelli A (1988) The grammar of dimensions in machine drawings. Comput Vis Image Underst 42(1):1–18

    Google Scholar 

  20. Dori D, Velkovitch Y (1998) Segmentation and recognition of dimensioning text from engineering drawings. Comput Vis Image Underst 69(2):196–201

    Article  Google Scholar 

  21. Dori D, Wenyin L (1998) Stepwise recovery of arc segmentation in complex line environments. Int J Doc Anal Recognit 1(1):62–71

    Google Scholar 

  22. Dori D, Wenyin L (1999) Sparse pixel vectorization, an algorithm and its performance evaluation. IEEE Trans Pattern Anal Mach Intell 21(3):202–215

    Article  Google Scholar 

  23. Dosch P, Tombre K, Ah-Soon C, Masini G (2000) A complete system for the analysis of architectural drawings. Int J Doc Anal Recognit 3(2):102–116

    Article  Google Scholar 

  24. Fan KC, Chen DF, Wen MG (1998) Skeletonization of binary images with nonuniform width via block decomposition and contour vector matching. Pattern Recognit 31(7):823–838

    Article  Google Scholar 

  25. Fletcher LA, Kasturi R (1988) A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans Pattern Anal Mach Intell 10(6):910–918

    Article  Google Scholar 

  26. Fukada Y (1984) A primary algorithm for the understanding of logic circuit diagrams. Pattern Recognit 17(1):125–134

    Article  Google Scholar 

  27. Han CC, Fan KC (1994) Skeleton generation of engineering drawings via contour matching. Pattern Recognit 27(2):261–275

    Article  Google Scholar 

  28. Hilaire X, Tombre K (2006) Robust and accurate vectorization of line drawings. IEEE Trans Pattern Anal Mach Intell 28(6):890–904

    Article  Google Scholar 

  29. Hoang TV, Tabbone S (2010) Text extraction from graphical document images using sparse representation. In: Proceedings of the 9th IAPR international workshop on document analysis systems, Boston, pp 143–150

    Google Scholar 

  30. Hori O, Tanigawa S (1993) Raster-to-vector conversion by line fitting based on contours and skeletons. In: Proceedings of the 2nd international conference on document analysis and recognition, Tsukuba, pp 353–358

    Google Scholar 

  31. Jain A, Bhattacharjee S (1992) Text segmentation using gabor filters for automatic document processing. Mach Vis Appl 5(3):169–184

    Article  Google Scholar 

  32. Janssen RDT, Vossepoel AM (1997) Adaptive vectorization of line drawing images. Comput Vis Image Underst 65(1):38–56

    Article  Google Scholar 

  33. Jonk A, van den Boomgaard R, Smeulders A (1999) Grammatical inference of dashed lines. Comput Vis Image Underst 74(3):212–226

    Article  Google Scholar 

  34. Journet N, Eglin V, Ramel JY, Mullot R (2005) Text/graphic labelling of ancient printed documents. In: Proceedings of the 8th international conference on document analysis and recognition, Seoul, pp 1010–1014

    Google Scholar 

  35. Kaneko T (1992) Line structure extraction from line-drawing images. Pattern Recognit 25(9):963–973

    Article  Google Scholar 

  36. Kasturi R, Bow ST, El-Masri W, Shah J, Gattiker JR, Mokate UB (1990) A system for interpretation of line drawings. IEEE Trans Pattern Anal Mach Intell 12(10):978–992

    Article  Google Scholar 

  37. Kawamura K, Watanabe H, Tominaga H (2004) Vector representation of binary images containing halftone dots. In: Proceedings of the IEEE international conference on multimedia and expo, Taipei, pp 335–338

    Google Scholar 

  38. Kolesnikov AN, Belekhov VV, Chalenko IO (1996) Vectorization of raster images. Pattern Recognit Image Anal 6(4):786–794

    Google Scholar 

  39. Lai CP, Kasturi R (1994) Detection of dimension sets in engineering drawings. IEEE Trans Pattern Anal Mach Intell 16(8):848–854

    Article  Google Scholar 

  40. Lam L, Lee SW, Suen CY (1992) Thinning methodologies – a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885

    Article  Google Scholar 

  41. Lamiroy B, Guebbas Y (2010) Robust and precise circular arc detection. In: Graphics recognition. Achievements, challenges and evolution. Lecture notes in computer science, vol 6020. Springer, Berlin/Heidelberg, pp 49–60

    Chapter  Google Scholar 

  42. Lee KH, Cho SB, Choy YC (2000) Automated vectorization of cartographic maps by a knowledge-based system. Eng Appl Artif Intell 13(2):165–178

    Article  Google Scholar 

  43. Lin SC, Ting CK (1997) A new approach for detection of dimensions set in mechanical drawings. Pattern Recognit Lett 18(4):367–373

    Article  Google Scholar 

  44. Lin X, Shimotsuji S, Minoh M, Sakai T (1985) Efficient diagram understanding with characteristic pattern detection. Comput Vis Image Underst 30(1):84–106

    Google Scholar 

  45. Loo PK, Tan CL (2001) Detection of word groups based on irregular pyramid. In: Proceedings of the 6th international conference on document analysis and recognition, Seattle, pp 200–204

    Google Scholar 

  46. Lu Z (1998) Detection of text regions from digital engineering drawings. IEEE Trans Pattern Anal Mach Intell 20(4):431–439

    Article  Google Scholar 

  47. Luo H, Kasturi R (1998) Improved directional morphological operations for separation of characters from maps/graphics. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 35–47

    Chapter  Google Scholar 

  48. Matsuyama T, Saburi K, Nagao M (1982) A structural analyzer for regularly arranged textures. Comput Graph Image Process 18:259–278

    Article  Google Scholar 

  49. Min W, Tang Z, Tang L (1993) Using web grammar to recognize dimensions in engineering drawings. Pattern Recognit 26(9):1407–1416

    Article  Google Scholar 

  50. Monagan G, Roosli M (1993) Appropriate base representation using a run graph. In: Proceedings of the 2nd international conference on document analysis and recognition, Tsukuba, pp 623–626

    Google Scholar 

  51. Niblack CW, Gibbons PB, Capson DW (1992) Generating skeletons and centerlines from the distance transform. CVGIP: Graph Models Image Process 54(5):420–437

    Google Scholar 

  52. Olson CF (1999) Constrained Hough transforms for curve detection. Comput Vis Image Underst 73(3):329–345

    Article  MATH  Google Scholar 

  53. Rosin PL (2003) Assessing the behaviour of polygonal approximation algorithms. Pattern Recognit 36(2):505–518

    Article  Google Scholar 

  54. Rosin PL, West GA (1989) Segmentation of edges into lines and arcs. Image Vis Comput 7(2):109–114

    Article  Google Scholar 

  55. Roy PP, Pal U, Lladós J (2012) Text line extraction in graphical documents using background and foreground information. Int J Doc Anal Recognit 15(3):227–241

    Article  Google Scholar 

  56. Sánchez G, Lladós J (2004) Syntactic models to represent perceptually regular repetitive patterns in graphic documents. In: Graphics recognition. Recent advances and perspectives. Lecture notes in computer science, vol 3088. Springer, Berlin/New York, pp 166–175

    Chapter  Google Scholar 

  57. Saund E, Mahoney J, Fleet D, Larner D (2002) Perceptual organization as a foundation for graphics recognition. In: Graphics recognition: algorithms and applications. Springer, Berlin/New York, pp 139–147

    Google Scholar 

  58. Shafait F, Keysers D, Breuel TM (2008) GREC 2007 arc segmentation contest: evaluation of four participating algorithms. In: Graphics recognition. Recent advances and new opportunities. Lecture notes in computer science, vol 5046. Springer, Berlin/New York, pp 310–320

    Google Scholar 

  59. Shih CC, Kasturi R (1989) Extraction of graphic primitives from images of paper based line drawings. Mach Vis Appl 2(2):103–113

    Article  Google Scholar 

  60. Shimotsuji S, Hori O, Asano M, Suzuki K, Hoshino F, Ishii T (1992) A robust recognition system for a drawing superimposed on a map. Computer 25(7):56–59

    Article  Google Scholar 

  61. Song J, Lyu MR (2005) A Hough transform based line recognition method utilizing both parameter space and image space. Pattern Recognit 38(4):539–552

    Article  Google Scholar 

  62. Song J, Su F, Tai CL, Cai S (2002) An object-oriented progressive-simplification-based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans Pattern Anal Mach Intell 24:1048–1060

    Article  Google Scholar 

  63. Song J, Lyu MR, Cai S (2004) Effective multiresolution arc segmentation: algorithms and performance evaluation. IEEE Trans Pattern Anal Mach Intell 26(11):1491–1506

    Article  Google Scholar 

  64. Tan CL, Ng PO (1998) Text extraction using pyramid. Pattern Recognit 31(1):63–72

    Article  Google Scholar 

  65. Tombre K (1998) Analysis of engineering drawings: state of the art and challenges. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 257–264

    Chapter  Google Scholar 

  66. Tombre K, Tabbone S (2000) Vectorization in graphics recognition: to thin or not to thin. In: Proceedings of the 15th international conference on pattern recognition, Barcelona, pp 91–96

    Google Scholar 

  67. Tombre K, Ah-Soon C, Dosch P, Massini G, Tabbone S (2000) Stable and robust vectorization: how to make the right choices. In: Graphics recognition recent advances. Lecture notes in computer science, vol 1941. Springer, Berlin/New York, pp 3–18

    Chapter  Google Scholar 

  68. Tombre K, Tabbone S, Pelissier L, Lamiroy B, Dosch P (2002) Text/graphics separation revisited. In: Document analysis systems V. Lecture notes in computer science, vol 2423. Springer, Berlin/New York, pp 615–620

    Google Scholar 

  69. Vaxivière P, Tombre K (1994) Subsampling: a structural approach to technical document vectorization. In: Structure and pattern recognition. Proceedings of the IAPR Workshop on syntactic and structural pattern recognition, Haifa, Israel, pp 323–332

    Google Scholar 

  70. Wahl F, Wong K, Casey R (1982) Block segmentation and text extraction in mixed text/image documents. Comput Graph Image Process 20(4):375–390

    Article  Google Scholar 

  71. Wendling L, Tabbone S (2004) A new way to detect arrows in line drawings. IEEE Trans Pattern Anal Mach Intell 26(7):935–941

    Article  Google Scholar 

  72. Wenyin L, Dori D (1996) Sparse pixel tracking: a fast vectorization algorithm applied to engineering drawings. In: Proceedings of the 13th international conference on pattern recognition, Vienna, pp 808–812

    Google Scholar 

  73. Wenyin L, Dori D (1998) A survey of non-thinning based vectorization methods. In: Advances in pattern recognition. Lecture notes in computer science, vol 1451. Springer, Berlin/New York, pp 230–241

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lladós, J., Rusiñol, M. (2014). Graphics Recognition Techniques. In: Doermann, D., Tombre, K. (eds) Handbook of Document Image Processing and Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-859-1_18

Download citation

Publish with us

Policies and ethics