Skip to main content

Lipids in Alzheimer’s Disease Brain

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Lipids are important biological molecules. The lipids of physiological importance for humans have four major functions: (1) structural components of biological membranes; (2) energy reserves, predominantly in the form of triacylglycerols; (3) both lipids and lipid derivatives serve as vitamins and hormones, and (4) lipophilic bile acids aid in lipid solubilization. Fatty acids fill two major roles in the body: as the components of more complex membrane lipids and as the major components of stored fat in the form of triacylglycerols. Alterations in lipid structure and/or metabolism lead to many neurodegenerative diseases, among which Alzheimer’s disease (AD) is of great concern due to the increasing life-span of the world’s population. Additionally, altered cholesterol metabolism, modulation in phospholipid content, and phospholipid asymmetry in plasma membranes may play pivotal role in the progression of AD. Amyloid β-peptide [Aβ (1–42)] plays a central role in the pathogenesis of AD. Aβ (1–42) is heavily deposited in the brains of Alzheimer’s disease (AD) patients, and free radical oxidative stress of neuronal lipids is extensive. Research by our group and others suggests that this observation is linked to Aβ-induced oxidative stress in AD brain. This chapter summarizes current knowledge on lipid alterations in AD brain, one potential cause of the external oxidative stress in AD brain, and the consequences of Aβ-induced lipid peroxidation in this neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Aβ(1-42):

amyloid beta-peptide

PtdSer:

Phosphatidylserine

PtdEtn:

Phosphatidylethanolamine

PtdIns:

phosphatidylinositol

PtdCho:

phosphatidylcholine

GEM:

glycosphingolipid-enriched membranes

RBC:

red blood cells

i-NOS:

inducible nitric oxide synthase

GPC:

glycerophosphatidylcholine

GPE:

glycerophosphatidylethanolamine

sPLA2 :

Ca2+ -dependent secretory phospholipase A2;  cPLA2, Ca2+ -dependent cytosolic phospholipase A2

iPLA2 :

Ca2+ -independent phospholipase A2

HNE:

4-hydroxy-2-nonenal

DAG:

diacylglycerol

NCT:

nicastrin

βaPP:

β-amyloid precursor protein

TBARS:

thiobarbituric acid reactive substances

IsoPs:

isoprostanes

NPs:

neuroprostanes

PG:

prostaglandin

LV:

levuglandins

NeuroKs:

neuroketals

NFT:

neurofibrillary tangles

SP:

senile plaques

FAEE:

ferulic acid ethyl ester

MCL:

mild cognitive impairment

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

References

  • Avdulov NA, Chochina SV, Igbavboa U, O’Hare EO, Schroeder F, et al. 1997. Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem 68: 2086–2091.

    PubMed  Google Scholar 

  • Bader Lange ML, Cenini G, Piroddi M, Mohmmad Abdul H, Sultana R, Galli F, Memo M, Butterfield DA. 2008. Loss of phospholipid asymmetry and elevated apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer’s disease. Neurobiol Dis 29: 444–456.

    Google Scholar 

  • Balasubramanian K, Schroit AJ. 2003. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol 65: 701–734.

    PubMed  Google Scholar 

  • Balazs L, Leon M. 1994. Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19: 1131–1137.

    PubMed  Google Scholar 

  • Balsinde J, Dennis EA. 1997. Function and inhibition of intracellular calcium-independent phospholipase A2. J Biol Chem 272: 16069–16072.

    PubMed  Google Scholar 

  • Barany M, Chang YC, Arus C, Rustan T, Frey WH 2nd. 1985. Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer’s brain. Lancet 1: 517.

    PubMed  Google Scholar 

  • Bell RM, Ballas LM, Coleman RA. 1981. Lipid topogenesis. J Lipid Res 22: 391–403.

    PubMed  Google Scholar 

  • Blusztajn JK, Lopez Gonzalez-Coviella I, Logue M, Growdon JH, Wurtman RJ. 1990. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer’s disease but not of Down’s syndrome patients. Brain Res 536: 240–244.

    PubMed  Google Scholar 

  • Borst P, Zelcer N, van Helvoort A. 2000. ABC transporters in lipid transport. Biochim Biophys Acta 1486: 128–144.

    PubMed  Google Scholar 

  • Boyd-Kimball D, Mohmmad Abdul H, Reed T, Sultana R, Butterfield DA. 2004. Role of phenylalanine 20 in Alzheimer’s amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity. Chem Res Toxicol 17: 1743–1749.

    PubMed  Google Scholar 

  • Brame CJ, Boutaud O, Davies SS, Yang T, Oates JA, et al. 2004. Modification of proteins by isoketal-containing oxidized phospholipids. J Biol Chem 279: 13447–13451.

    PubMed  Google Scholar 

  • Bruce-Keller AJ, Li YJ, Lovell MA, Kraemer PJ, Gary DS, et al. 1998. 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J Neuropathol Exp Neurol 57: 257–267.

    PubMed  Google Scholar 

  • Bruns CM, Hubatsch I, Ridderstrom M, Mannervik B, Tainer JA. 1999. Human glutathione transferase A4–4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. J Mol Biol 288: 427–439.

    PubMed  Google Scholar 

  • Buerger K, Teipel SJ, Zinkowski R, Sunderland T, Andreasen N, et al. 2005. Increased levels of CSF phosphorylated tau in apolipoprotein E varepsilon4 carriers with mild cognitive impairment. Neurosci Lett 391: 48–50.

    PubMed  Google Scholar 

  • Buton X, Morrot G, Fellmann P, Seigneuret M. 1996. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane. J Biol Chem 271: 6651–6657.

    PubMed  Google Scholar 

  • Butterfield DA. 1997. beta-Amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Chem Res Toxicol 10: 495–506.

    PubMed  Google Scholar 

  • Butterfield DA. 2002. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36: 1307–1313.

    PubMed  Google Scholar 

  • Butterfield DA, Boyd-Kimball D. 2004. Proteomics analysis in Alzheimer’s disease: New insights into mechanisms of neurodegeneration. Int Rev Neurobiol 61: 159–188.

    PubMed  Google Scholar 

  • Butterfield DA, Hensley K, Harris M, Mattson M, Carney J. 1994. beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer’s disease. Biochem Biophys Res Commun 200: 710–715.

    PubMed  Google Scholar 

  • Butterfield DA, Lauderback CM. 2002. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32: 1050–1060.

    PubMed  Google Scholar 

  • Butterfield DA, Reed T, Perluigi M, Marco CD, Coccia R, et al. 2006. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397: 170-173.

    PubMed  Google Scholar 

  • Butterfield D, Stadtman E. 1997. Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 2: 161–191.

    Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE. 1999. Protein-bound acrolein: A novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72: 751–756.

    PubMed  Google Scholar 

  • Callahan MK, Williamson P, Schlegel RA. 2000. Surface expression of phosphatidylserine on macrophages is required for phagocytosis of apoptotic thymocytes. Cell Death Differ 7: 645–653.

    PubMed  Google Scholar 

  • Castegna A, Lauderback CM, Mohmmad-Abdul H, Butterfield DA. 2004. Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: Implications for Alzheimer’s disease. Brain Res 1004: 193–197.

    PubMed  Google Scholar 

  • Chapman KD, Trelease RN. 1991. Acquisition of membrane lipids by differentiating glyoxysomes: Role of lipid bodies. J Cell Biol 115: 995–1007.

    PubMed  Google Scholar 

  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, et al. 2002. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70: 462–473.

    PubMed  Google Scholar 

  • Colleau M, Herve P, Fellmann P, Devaux PF. 1991. Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem Phys Lipids 57: 29–37.

    PubMed  Google Scholar 

  • Connor J, Pak CH, Zwaal RF, Schroit AJ. 1992. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. Evidence for an ATP-dependent and protein-mediated process. J Biol Chem 267: 19412–19417.

    PubMed  Google Scholar 

  • Craig D, Hart DJ, McCool K, McIlroy SP, Passmore AP. 2004. Apolipoprotein E e4 allele influences aggressive behaviour in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75: 1327–1330.

    PubMed  Google Scholar 

  • Daleke DL, Huestis WH. 1985. Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry 24: 5406–5416.

    PubMed  Google Scholar 

  • Daleke DL, Lyles JV. 2000. Identification and purification of aminophospholipid flippases. Biochim Biophys Acta 1486: 108–127.

    PubMed  Google Scholar 

  • Daniels WM, van Rensburg SJ, van Zyl JM, Taljaard JJ. 1998. Melatonin prevents beta-amyloid-induced lipid peroxidation. J Pineal Res 24: 78–82.

    PubMed  Google Scholar 

  • Davies SS, Amarnath V, Montine KS, Bernoud-Hubac N, Boutaud O, et al. 2002. Effects of reactive gamma-ketoaldehydes formed by the isoprostane pathway (isoketals) and cyclooxygenase pathway (levuglandins) on proteasome function. Faseb J 16: 715–717.

    PubMed  Google Scholar 

  • Demaurex N, Romanek RR, Orlowski J, Grinstein S. 1997. ATP dependence of Na+/H + exchange. Nucleotide specificity and assessment of the role of phospholipids. J Gen Physiol 109: 117–128.

    PubMed  Google Scholar 

  • Dhillon HS, Donaldson D, Dempsey RJ, Prasad MR. 1994. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J Neurotrauma 11: 405–415.

    PubMed  Google Scholar 

  • Dolis D, Moreau C, Zachowski A, Devaux PF. 1997. Aminophospholipid translocase and proteins involved in transmembrane phospholipid traffic. Biophys Chem 68: 221–231.

    PubMed  Google Scholar 

  • Drake J, Kanski J, Varadarajan S, Tsoras M, Butterfield DA. 2002. Elevation of brain glutathione by gamma-glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J Neurosci Res 68: 776–784.

    PubMed  Google Scholar 

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160: 113–123.

    PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81–128.

    PubMed  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, et al. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA. 2005. Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45: 613–631.

    PubMed  Google Scholar 

  • Flores I, Jones DR, Merida I. 2000. Changes in the balance between mitogenic and antimitogenic lipid second messengers during proliferation, cell arrest, and apoptosis in T-lymphocytes. Faseb J 14: 1873–1875.

    PubMed  Google Scholar 

  • Francescangeli E, Boila A, Goracci G. 2000. Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem Res 25: 705–713.

    PubMed  Google Scholar 

  • Francescangeli E, Grassi S, Pettorossi VE, Goracci G. 2002. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei. Neurochem Res 27: 1465–1471.

    PubMed  Google Scholar 

  • Gattaz WF, Forlenza OV, Talib LL, Barbosa NR, Bottino CM. 2004. Platelet phospholipase A(2) activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm 111: 591–601.

    PubMed  Google Scholar 

  • Gottesman MM, Pastan I. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427.

    PubMed  Google Scholar 

  • Gridley KE, Green PS, Simpkins JW. 1997. Low concentrations of estradiol reduce beta-amyloid (25–35)-induced toxicity, lipid peroxidation and glucose utilization in human SK-N-SH neuroblastoma cells. Brain Res 778: 158–165.

    PubMed  Google Scholar 

  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, et al. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58: 740–747.

    PubMed  Google Scholar 

  • Hall ED, McCall JM, Means ED. 1994. Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28: 221–268.

    PubMed  Google Scholar 

  • Halleck MS, Pradhan D, Blackman C, Berkes C, Williamson P, et al. 1998. Multiple members of a third subfamily of P-type ATPases identified by genomic sequences and ESTs. Genome Res 8: 354–361.

    PubMed  Google Scholar 

  • Hamon Y, Broccardo C, Chambenoit O, Luciani MF, Toti F, et al. 2000. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2: 399–406.

    PubMed  Google Scholar 

  • Harris ME, Carney JM, Cole PS, Hensley K, Howard BJ, et al. 1995. beta-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: Implications for Alzheimer’s disease. Neuroreport 6: 1875–1879.

    PubMed  Google Scholar 

  • Harris ME, Wang Y, Pedigo NW Jr, Hensley K, Butterfield DA, et al. 1996. Amyloid beta peptide (25–35) inhibits Na+ -dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 67: 277–286.

    PubMed  Google Scholar 

  • Hazel JR, Williams EE. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29: 167–227.

    PubMed  Google Scholar 

  • Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, et al. 1999. Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 274: 36707–36714.

    PubMed  Google Scholar 

  • Ikemoto A, Kobayashi T, Emoto K, Umeda M, Watanabe S, et al. 1999. Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch Biochem Biophys 364: 67–74.

    PubMed  Google Scholar 

  • Joshi G, Sultana R, Perluigi M, Allan Butterfield D. 2005. In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate. Free Radic Biol Med 38: 1023–1031.

    PubMed  Google Scholar 

  • Kabre E, Chaib N, Boussard P, Merino G, Devleeschouwer M, et al. 1999. Study on the activation of phospholipases A2 by purinergic agonists in rat submandibular ductal cells. Biochim Biophys Acta 1436: 616–627.

    PubMed  Google Scholar 

  • Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, et al. 2000. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477: 1–7.

    PubMed  Google Scholar 

  • Kamp D, Haest CW. 1998. Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim Biophys Acta 1372: 91–101.

    PubMed  Google Scholar 

  • Katzman R, Saitoh T. 1991. Advances in Alzheimer’s disease. Faseb J 5: 278–286.

    PubMed  Google Scholar 

  • Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, et al. (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80: 685–696.

    PubMed  Google Scholar 

  • Kirschnek S, Ying S, Fischer SF, Hacker H, Villunger A, et al. 2005. Phagocytosis-induced apoptosis in macrophages is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. J Immunol 174: 671–679.

    PubMed  Google Scholar 

  • Koppal T, Subramaniam R, Drake J, Prasad MR, Dhillon H, et al. 1998. Vitamin E protects against Alzheimer’s amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res 786: 270–273.

    PubMed  Google Scholar 

  • Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac’h-Pillot K, et al. 2005. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. Faseb J 19: 85–87.

    PubMed  Google Scholar 

  • Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP. 1997. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17: 5089–5100.

    PubMed  Google Scholar 

  • Kuge O, Nishijima M, Akamatsu Y. 1986. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors. J Biol Chem 261: 5795–5798.

    PubMed  Google Scholar 

  • Kurz A, Viertel D, Herrmann A, Muller K. 2005. Localization of phosphatidylserine in boar sperm cell membranes during capacitation and acrosome reaction. Reproduction 130: 615–626.

    PubMed  Google Scholar 

  • Kuypers FA, Lewis RA, Hua M, Schott MA, Discher D, et al. 1996. Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87: 1179–1187.

    PubMed  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537.

    PubMed  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, et al. 2001. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: The role of Abeta1–42. J Neurochem 78: 413–416.

    PubMed  Google Scholar 

  • Lauderback CM, Drake J, Zhou D, Hackett JM, Castegna A, et al. 2003. Derivatives of xanthic acid are novel antioxidants: Application to synaptosomes. Free Radic Res 37: 355–365.

    PubMed  Google Scholar 

  • Laufs U, Gertz K, Dirnagl U, Bohm M, Nickenig G, et al. 2002. Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res 942: 23–30.

    PubMed  Google Scholar 

  • Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PT Jr, et al. 1998. A detergent-insoluble membrane compartment contains A beta in vivo. Nat Med 4: 730–734.

    PubMed  Google Scholar 

  • Lovell MA, Ehmann WD, Butler SM, Markesbery WR. 1995. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45: 1594–1601.

    PubMed  Google Scholar 

  • Lovell MA, Ehmann WD, Mattson MP, Markesbery WR. 1997. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18: 457–461.

    PubMed  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR. 1998. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 51: 1562–1566.

    PubMed  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR. 2001. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22: 187–194.

    PubMed  Google Scholar 

  • Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. 1997. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68: 2061–2069.

    PubMed  Google Scholar 

  • Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, et al. 2004. Rat brain cortex mitochondria release group II secretory phospholipase A(2) under reduced membrane potential. J Biol Chem 279: 37860–37869.

    PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD. 2001. Glutamate transporters in neurologic disease. Arch Neurol 58: 365–370.

    PubMed  Google Scholar 

  • Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, et al. 1998. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150: 40–44.

    PubMed  Google Scholar 

  • Mark RJ, Fuson KS, May PC. 1999. Characterization of 8-epiprostaglandin F2alpha as a marker of amyloid beta-peptide-induced oxidative damage. J Neurochem 72: 1146–1153.

    PubMed  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. 1997. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 68: 255–264.

    PubMed  Google Scholar 

  • Markesbery WR. 1997. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23: 134–147.

    PubMed  Google Scholar 

  • Markesbery WR, Lovell MA. 1998. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19: 33–36.

    PubMed  Google Scholar 

  • Martin OC, Pagano RE. 1987. Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma membrane of cultured cells. Evidence for a protein-mediated and ATP-dependent process(es). J Biol Chem 262: 5890–5898.

    PubMed  Google Scholar 

  • Martin S, Pombo I, Poncet P, David B, Arock M, et al. 2000. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. Int Arch Allergy Immunol 123: 249–258.

    PubMed  Google Scholar 

  • Mason RP, Estermyer JD, Kelly JF, Mason PE. 1996. Alzheimer’s disease amyloid beta peptide 25–35 is localized in the membrane hydrocarbon core: X-ray diffraction analysis. Biochem Biophys Res Commun 222: 78–82.

    PubMed  Google Scholar 

  • Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, et al. 1997. Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer’s disease. Brain Res Brain Res Rev 23: 47–61.

    PubMed  Google Scholar 

  • Middelkoop E, Lubin BH, Op den Kamp JA, Roelofsen B. 1986. Flip-flop rates of individual molecular species of phosphatidylcholine in the human red cell membrane. Biochim Biophys Acta 855: 421–424.

    PubMed  Google Scholar 

  • Mohmmad Abdul H, Butterfield DA. 2005. Protection against amyloid beta-peptide (1–42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester: Implications for Alzheimer’s disease. Biochim Biophys Acta 1741: 140–148.

    PubMed  Google Scholar 

  • Mohmmad Abdul H, Wenk GL, Gramling M, Hauss-Wegrzyniak B, Butterfield DA. 2004. APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: Implications for Alzheimer’s disease. Neurosci Lett 368: 148–150.

    PubMed  Google Scholar 

  • Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ. 1997. 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol 56: 866–871.

    PubMed  Google Scholar 

  • Montine TJ, Markesbery WR, Morrow JD, Roberts LJ 2nd. 1998. Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann Neurol 44: 410–413.

    PubMed  Google Scholar 

  • Montine TJ, Markesbery WR, Zackert W, Sanchez SC, Roberts LJ 2nd, et al. 1999. The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. Am J Pathol 155: 863–868.

    PubMed  Google Scholar 

  • Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, et al. 2002. Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33: 620–626.

    PubMed  Google Scholar 

  • Moriyama Y, Nelson N. 1988. Purification and properties of a vanadate- and N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem 263: 8521–8527.

    PubMed  Google Scholar 

  • Moriyama Y, Nelson N, Maeda M, Futai M. 1991. Vanadate-sensitive ATPase from chromaffin granule membranes formed a phosphoenzyme intermediate and was activated by phosphatidylserine. Arch Biochem Biophys 286: 252–256.

    PubMed  Google Scholar 

  • Morrot G, Herve P, Zachowski A, Fellmann P, Devaux PF. 1989. Aminophospholipid translocase of human erythrocytes: Phospholipid substrate specificity and effect of cholesterol. Biochemistry 28: 3456–3462.

    PubMed  Google Scholar 

  • Morrow JD. 2000. The isoprostanes: Their quantification as an index of oxidant stress status in vivo. Drug Metab Rev 32: 377–385.

    PubMed  Google Scholar 

  • Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ 2nd. 1992. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89: 10721–10725.

    PubMed  Google Scholar 

  • Morrow JD, Awad JA, Wu A, Zackert WE, Daniel VC, et al. 1996. Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J Biol Chem 271: 23185–23190.

    PubMed  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, et al. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87: 9383–9387.

    PubMed  Google Scholar 

  • Morrow JD, Minton TA, Mukundan CR, Campbell MD, Zackert WE, et al. 1994. Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. J Biol Chem 269: 4317–4326.

    PubMed  Google Scholar 

  • Muller K, Pomorski T, Muller P, Zachowski A, Herrmann A. 1994. Protein-dependent translocation of aminophospholipids and asymmetric transbilayer distribution of phospholipids in the plasma membrane of ram sperm cells. Biochemistry 33: 9968–9974.

    PubMed  Google Scholar 

  • Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, et al. 1992. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89: 1671–1675.

    PubMed  Google Scholar 

  • Palmer AM, Burns MA. 1994. Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res 645: 338–342.

    PubMed  Google Scholar 

  • Perluigi M, Joshi G, Sultana R, Calabrese V, Marco DM, et al. 2006. In vivo protection by the xanthate D609 against amyloid beta-peptide (1–42)-induced oxidative stress. Neuroscience 138: 1161-1170.

    PubMed  Google Scholar 

  • Pettegrew JW, Panchalingam K, Moossy J, Martinez J, Rao G, et al. 1988. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Arch Neurol 45: 1093–1096.

    PubMed  Google Scholar 

  • Pocernich CB, Butterfield DA. 2003. Acrolein inhibits NADH-linked mitochondrial enzyme activity: Implications for Alzheimer’s disease. Neurotox Res 5: 515–520.

    PubMed  Google Scholar 

  • Pocernich CB, Cardin AL, Racine CL, Lauderback CM, Butterfield DA. 2001. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 39: 141–149.

    PubMed  Google Scholar 

  • Poirier J. 2005. Apolipoprotein E, cholesterol transport and synthesis in sporadic Alzheimer’s disease. Neurobiol Aging 26: 355–361.

    PubMed  Google Scholar 

  • Pomorski T, Hrafnsdottir S, Devaux PF, van Meer G. 2001. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol 12: 139–148.

    PubMed  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. 1998. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 23: 81–88.

    PubMed  Google Scholar 

  • Pratico D, Sung S. 2004. Lipid peroxidation and oxidative imbalance: Early functional events in Alzheimer’s disease. J Alzheimers Dis 6: 171–175.

    PubMed  Google Scholar 

  • Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA. 1998. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 4: 1189–1192.

    PubMed  Google Scholar 

  • Pratico D, Yao Y, Rokach J, Mayo M, Silverberg GG, et al. 2004. Reduction of brain lipid peroxidation by CSF drainage in Alzheimer’s disease patients. J Alzheimers Dis 6: 385–389; discussion 443–389.

    PubMed  Google Scholar 

  • Rao LV, Tait JF, Hoang AD. 1992. Binding of annexin V to a human ovarian carcinoma cell line (OC-2008). Contrasting effects on cell surface factor VIIa/tissue factor activity and prothrombinase activity. Thromb Res 67: 517–531.

    PubMed  Google Scholar 

  • Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, et al. 2001. Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am J Pathol 158: 293–297.

    PubMed  Google Scholar 

  • Riddell DR, Christie G, Hussain I, Dingwall C. 2001. Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11: 1288–1293.

    PubMed  Google Scholar 

  • Roberts LJ 2nd, Montine TJ, Markesbery WR, Tapper AR, Hardy P, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273: 13605–13612.

    PubMed  Google Scholar 

  • Roberts LJ 2nd, Morrow JD. 1997. The generation and actions of isoprostanes. Biochim Biophys Acta 1345: 121–135.

    PubMed  Google Scholar 

  • Roberts LJ 2nd, Morrow JD. 2002. Products of the isoprostane pathway: Unique bioactive compounds and markers of lipid peroxidation. Cell Mol Life Sci 59: 808–820.

    PubMed  Google Scholar 

  • Ross BM, Moszczynska A, Erlich J, Kish SJ. 1998. Phospholipid-metabolizing enzymes in Alzheimer’s disease: Increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70: 786–793.

    PubMed  Google Scholar 

  • Ruetz S, Gros P. 1994. Phosphatidylcholine translocase: A physiological role for the mdr2 gene. Cell 77: 1071–1081.

    PubMed  Google Scholar 

  • Rust S, Rosier M, Funke H, Real J, Amoura Z, et al. 1999. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22: 352–355.

    PubMed  Google Scholar 

  • Salem N Jr, Niebylski CD. 1995. The nervous system has an absolute molecular species requirement for proper function. Mol Membr Biol 12: 131–134.

    PubMed  Google Scholar 

  • Sawai H, Domae N, Okazaki T. 2005. Current status and perspectives in ceramide-targeting molecular medicine. Curr Pharm Des 11: 2479–2487.

    PubMed  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, et al. 1997. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68: 2092–2097.

    PubMed  Google Scholar 

  • Schroit AJ, Madsen JW, Tanaka Y. 1985. In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem 260: 5131–5138.

    PubMed  Google Scholar 

  • Seigneuret M, Devaux PF. 1984. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes. Proc Natl Acad Sci USA 81: 3751–3755.

    PubMed  Google Scholar 

  • Selkoe DJ. 2001. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3: 75–80.

    PubMed  Google Scholar 

  • Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387: 569–572.

    PubMed  Google Scholar 

  • Sjogren M, Mielke M, Gustafson D, Zandi P, Skoog I. 2006. Cholesterol and Alzheimer’s disease-is there a relation? Mech Ageing Dev. 127: 138-147.

    PubMed  Google Scholar 

  • Smeets EF, Comfurius P, Bevers EM, Zwaal RF. 1994. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim Biophys Acta 1195: 281–286.

    PubMed  Google Scholar 

  • Sparks DL, Sabbagh MN, Breitner JC, Hunsaker JC 3rd. 2003. Is cholesterol a culprit in Alzheimer’s disease? Int Psychogeriatr 15(Suppl 1): 153–159.

    PubMed  Google Scholar 

  • Sprong H, van der Sluijs P, van Meer G. 2001. How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2: 504–513.

    PubMed  Google Scholar 

  • Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA. 1996. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3: 51–63.

    PubMed  Google Scholar 

  • Subbarao KV, Richardson JS, Ang LC. 1990. Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J Neurochem 55: 342–345.

    PubMed  Google Scholar 

  • Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, et al. 1997. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem 69: 1161–1169.

    PubMed  Google Scholar 

  • Sultana R, Butterfield DA. 2004. Oxidatively modified GST and MRP1 in Alzheimer’s disease brain: Implications for accumulation of reactive lipid peroxidation products. Neurochem Res 29: 2215–2220.

    PubMed  Google Scholar 

  • Sultana R, Newman S, Mohmmad-Abdul H, Keller JN, Butterfield DA. 2004. Protective effect of the xanthate, D609, on Alzheimer’s amyloid beta-peptide (1–42)-induced oxidative stress in primary neuronal cells. Free Radic Res 38: 449–458.

    PubMed  Google Scholar 

  • Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA. 2005. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1–42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J Neurochem 92: 749–758.

    PubMed  Google Scholar 

  • Sun AY, Draczynska-Lusiak B, Sun GY. 2001. Oxidized lipoproteins, beta amyloid peptides and Alzheimer’s disease. Neurotox Res 3: 167–178.

    PubMed  Google Scholar 

  • Svennerholm L, Gottfries CG. 1994. Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62: 1039–1047.

    PubMed  Google Scholar 

  • Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, et al. 2000. A frontal variant of Alzheimer’s disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 37: 17–31.

    PubMed  Google Scholar 

  • Tamaoka A, Miyatake F, Matsuno S, Ishii K, Nagase S, et al. 2000. Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer’s disease. Neurology 54: 2319–2321.

    PubMed  Google Scholar 

  • Tang X, Halleck MS, Schlegel RA, Williamson P. 1996. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272: 1495–1497.

    PubMed  Google Scholar 

  • Thomsen P, Roepstorff K, Stahlhut M, van Deurs B. 2002. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13: 238–250.

    PubMed  Google Scholar 

  • Thon L, Mohlig H, Mathieu S, Lange A, Bulanova E, et al. 2005. Ceramide mediates caspase-independent programmed cell death. Faseb J 19: 1945–1956.

    PubMed  Google Scholar 

  • Uchida K, Stadtman ER. 1992. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 89: 4544–4548.

    PubMed  Google Scholar 

  • van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, et al. 1996. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507–517.

    PubMed  Google Scholar 

  • Vance JE, Vance DE. 1988. Does rat liver Golgi have the capacity to synthesize phospholipids for lipoprotein secretion? J Biol Chem 263: 5898–5909.

    PubMed  Google Scholar 

  • Vance JE, Shiao YJ. 1996. Intracellular trafficking of phospholipids: Import of phosphatidylserine into mitochondria. Anticancer Res 16: 1333–1339.

    PubMed  Google Scholar 

  • Varadarajan S, Yatin S, Aksenova M, Butterfield DA. 2000. Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130: 184–208.

    PubMed  Google Scholar 

  • Voelker DR. 1989. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells. Proc Natl Acad Sci USA 86: 9921–9925.

    PubMed  Google Scholar 

  • Voelker DR. 2000. Interorganelle transport of aminoglycerophospholipids. Biochim Biophys Acta 1486: 97–107.

    PubMed  Google Scholar 

  • Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, et al. 2002. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9: 11–23.

    PubMed  Google Scholar 

  • Wali RK, Jaffe S, Kumar D, Kalra VK. 1988. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes 37: 104–111.

    PubMed  Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, et al. 1999. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98: 13–23.

    PubMed  Google Scholar 

  • Williamson P, Algarin L, Bateman J, Choe HR, Schlegel RA. 1985. Phospholipid asymmetry in human erythrocyte ghosts. J Cell Physiol 123: 209–214.

    PubMed  Google Scholar 

  • Williamson P, Kulick A, Zachowski A, Schlegel RA, Devaux PF. 1992. Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes. Biochemistry 31: 6355–6360.

    PubMed  Google Scholar 

  • Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G. 1990. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: Effects of chronic ethanol consumption. Biochim Biophys Acta 1025: 243–246.

    PubMed  Google Scholar 

  • Yamada E. 1955. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1: 445–458.

    PubMed  Google Scholar 

  • Yatin SM, Varadarajan S, Butterfield DA. 2000. Vitamin E prevents Alzheimer’s amyloid beta-peptide (1–42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis 2: 123–131.

    PubMed  Google Scholar 

  • Zachowski A, Gaudry-Talarmain YM. 1990. Phospholipid transverse diffusion in synaptosomes: Evidence for the involvement of the aminophospholipid translocase. J Neurochem 55: 1352–1356.

    PubMed  Google Scholar 

  • Zeng C, Lee JT, Chen H, Chen S, Hsu CY, et al. 2005. Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem 94: 703–712.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported, in part, by NIH (NIA) grants to D. A. B.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Butterfield, D.A., Abdul, H.M. (2009). Lipids in Alzheimer’s Disease Brain. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_22

Download citation

Publish with us

Policies and ethics