Skip to main content

Advances in Lipid Analysis/Lipidomics – Analyses of Phospholipids by Recent Application of Mass Spectrometry

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Mass spectrometry (MS) has become a most useful tool in the analysis of phospholipids. Analysis of molecular species of phospholipids adding to that of their classes and subclasses is necessary to elucidate their physiological functions. As analytical methods for lipidomics, basically three different types of approaches in the identification of phospholipid molecular species can be selected. The first one is shotgun LC-MS/MS analysis with data-dependent scan, the second one is structure-related focused methods such as precursor ion scanning or neutral loss scanning. Both types of data can be subjected to our search engine, “Lipid Search” (http://lipidsearch.jp), and most probable molecular species can be obtained with their compensated ion intensities. The lipid database for this search engine was constructed theoretically from their structure similarities and variations in polar head groups and fatty carbonyl chains. And identified individual molecular species can be automatically profiling according to their compensated ion intensities. The third method, such as multiple reaction monitoring, is also important for detecting very small amounts of targeted molecules such as lipid mediators or oxidized lipid metabolites. The choice of these three different kinds of methods seems to be very important for neurochemical research for detecting different kinds of lipid metabolites such as unknown lipid ligands, focused class of lipids, or targeted minor lipid mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CID:

collision-induced dissociation

ESI:

electrospray ionization

HPLC:

high-performance liquid chromatography

LC:

liquid chromatography

MS:

mass spectrometry

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

SM:

sphingomyelin

UPLC:

ultra performance liquid chromatography

References

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P. 2004. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431: 415-422.

    Article  PubMed  CAS  Google Scholar 

  • Domingues P, Domingues MR, Amado FM, Ferrer- Correia AJ. 2001. Characterization of sodiated glycerol phosphatidylcholine phospholipids by mass spectrometry. Rapid Commun Mass Spectrom 15: 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Ekroos K, Chernushevich LV, Simons K, Shevchenko A. 2002. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 74: 941–949.

    Article  PubMed  CAS  Google Scholar 

  • Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, et al. 2003. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res 44: 2181–2192.

    Article  PubMed  CAS  Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, et al. 2005. A comprehensive classification system for lipids. J Lipid Res 46: 839–861.

    Article  PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Fridriksson EK, Shipkova PA, Sheets ED, Holowka D, Baird B, et al. 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38: 8056.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Gross RW. 1994. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA 91: 10635–10639.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Gross RW. 2005. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24: 367–412.

    Article  PubMed  CAS  Google Scholar 

  • Han X, Yang J, Cheng H, Ye H, Gross RW. 2004. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal Biochem 330: 317–331.

    Article  PubMed  CAS  Google Scholar 

  • Heller DN, Murphy CM, Cotter RJ, Fenselau C, Uy OM. 1988. Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem 60: 2787–2791.

    Article  PubMed  CAS  Google Scholar 

  • Houjou T, Yamatani K, Nakanishi H, Imagawa M, T, Shimizu et al. 2004. Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun Mass Spectrom 18: 3123–3130.

    Article  PubMed  CAS  Google Scholar 

  • Houjou T, Yamatani K, Nakanishi H, Imagawa M, Shimizu T, et al. 2005. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19: 654–666.

    Article  PubMed  CAS  Google Scholar 

  • Hsu FF, Turk J. 2003. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: The fragmentation processes. J Am Soc Mass Spectrom 14: 352–363.

    Article  PubMed  CAS  Google Scholar 

  • Ishida M, Imagawa M, Shimizu T, Taguchi R. 2005a. Specific detection of lysophosphatidic acids in serum extracts by tandem mass spectrometry. J Mass Spectrom Soc Jpn 53: 25–32.

    CAS  Google Scholar 

  • Ishida M, Imagawa M, Shimizu T, Taguchi R. 2005b. Effective Extraction and analysis for lysophosphatidic acids and their precursors in human plasma usng electrospray ionization mass spectrometry. J Mass Spectrom Soc Jpn 53: 217–226.

    CAS  Google Scholar 

  • Ishida M, Yamazaki T, Houjou T, Imagawa M, Harada A, et al. 2004. High-resolution analysis by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for the identification of molecular species of phospholipids and their oxidized metabolites. Rapid Commun Mass Spectrom 18: 2486–2494.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova PT, Cerda BA, Horn DM, Cohen JS, McLafferty FW, et al. 2001. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc Natl Acad Sci USA 98: 7152–7157.

    Article  PubMed  CAS  Google Scholar 

  • Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL. 2003. Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal Chem 75: 1340–1347.

    Article  PubMed  CAS  Google Scholar 

  • Kerwin JL, Tuininga AR, Ericsson LH. 1994. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 35: 1102–1114.

    PubMed  CAS  Google Scholar 

  • Khaselev N, Murphy RC. 2000. Electrospray ionization mass spectrometry of lysoglycerophosphocholine lipid subclasses. J Am Soc Mass Spectrom 11: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann WD, Koester M, Erben G, Keppler D. 1997. Characterization and quantification of rat bile phosphatidylcholine by electrospray-tandem mass spectrometry. Anal Biochem 246: 102–110.

    Article  PubMed  CAS  Google Scholar 

  • Marto JA, White FM, Seldomridge S, Marshall AG. 1995. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 67: 3979–3984.

    Article  PubMed  CAS  Google Scholar 

  • Nor Aliza AR, Bedick JC, Rana RL, Tunaz H, Hoback WW, et al. 2001. Arachidonic and eicosapentaenoic acids in tissues of the firefly, Photinus pyralis (Insecta: Coleoptera). Comp Biochem Physiol A Mol Integr Physiol 128: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Pulfer M, Murphy RC. 2003. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22: 332–364.

    Article  PubMed  CAS  Google Scholar 

  • Ramanadham S, Hsu FF, Bohrer A, Nowatzke W, Ma Z, et al. 1998. Electrospray ionization mass spectrometric analyses of phospholipids from rat and human pancreatic islets and subcellular membranes: Comparison to other tissues and implications for membrane fusion in insulin exocytosis. Biochemistry 37: 4553–4567.

    Article  PubMed  CAS  Google Scholar 

  • Rugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. 1997. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94: 2339–2344.

    Article  Google Scholar 

  • Taguchi R, Hayakawa J, Takeuchi Y, Ishida M. 2000. Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 35: 953–966.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, et al. 2005. Focused lipidomics by tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 823: 26–36.

    Article  CAS  Google Scholar 

  • Tserng KY, Griffin R. 2003. Quantitation and molecular species determination of diacylglycerols, phosphatidylcholines, ceramides, and sphingomyelins with gas chromatography. Anal Biochem 323: 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, et al. 2003. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Shimizu F, Setaka M. 2000. Simultaneous separation of lysophospholipids from the total lipid fraction of crude biological samples using two-dimensional thin-layer chromatography. J Lipid Res 41: 142–147.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by special Coordination fund from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government, and a fund from Core Research for Evolutional and Technology (CREST) of Japan Science and Technology Agency (JST).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Taguchi, R. (2009). Advances in Lipid Analysis/Lipidomics – Analyses of Phospholipids by Recent Application of Mass Spectrometry. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_1

Download citation

Publish with us

Policies and ethics