Skip to main content

Magnetotactic Bacteria

  • Reference work entry
The Prokaryotes

1 Introduction

Magnetotactic bacteria are Gram-negative, motile prokaryotes that synthesize intracellular crystals of magnetic iron oxide or iron sulfide minerals. These apparently membrane-bounded crystals are called magnetosomes (Balkwill et al., 1980) and cause the bacteria to orient and migrate along geomagnetic field lines. Magnetotactic bacteria are indigenous in sediments or stratified water columns where they occur predominantly at the oxic-anoxic transition zone (OATZ) and the anoxic regions of the habitat or both. They represent a diverse group of microorganisms with respect to morphology, physiology and phylogeny. Despite the efforts of a number of different research groups, only a few representatives of this group of bacteria have been isolated in axenic culture since their discovery by (Richard P. Blakemore, 1975), and even fewer have been adequately described in the literature. Therefore, little is known about their metabolic plasticity, whereas their diverse morphology...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Balkwill, D. L., D. Maratea, and R. P. Blakemore. 1980 Ultrastructure of a magnetic spirillum J. Bacteriol. 141 1399–1408

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., R. B. Frankel, A. J. Garratt-Reed, and S. Mann. 1988 Anaerobic Production of magnetite by a marine magnetotactic bacterium Nature 334 518–519

    Article  Google Scholar 

  • Bazylinski, D. A., R. B. Frankel, A. J. Garratt-Reed, and S. Mann. 1990 Biomineralizationof iron-sulfides in magnetotactic bacteria from sulfidic environments In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 239–255

    Google Scholar 

  • Bazylinski, D. A., and R. B. Frankel. 1992 Production of iron sulfide minerals by magnetotactic bacteria from sulfidic environments In: H. C. W. Skinner, and Fitzpatrick (Eds.) Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments Catena-Verlag Cremlingen-Destedt, Germany 147–159

    Google Scholar 

  • Bazylinski, D. A., A. J. Garratt-Reed, A. Abedi, and R. B. Frankel. 1993aCopper association with iron sulfide magnetosomes in a magnetotactic bacterium Arch. Microbiol. 160 35–42

    CAS  Google Scholar 

  • Bazylinski, D. A., B. R. Heywood, S. Mann, and R. B. Frankel. 1993bFe3O4 and Fe3S4 in a bacterium Nature 366 218–219

    Article  Google Scholar 

  • Bazylinski, D. A., A. Garratt-Reed, and R. B. Frankel. 1994 Electron-microscopic studies of magnetosomes in magnetotactic bacteria Microscopy Res. Tech. 27 389–401

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., R. B. Frankel, B. R. Heywood, S. Mann, J. W. King, P. L. Donaghay, and A. K. Hanson. 1995 Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium Appl. Environ. Microbiol. 61 3232–3239

    PubMed  CAS  Google Scholar 

  • Berner, R. A. 1967 Thermodynamic stability of sedimentary iron sulfides Am. J. Sci. 265 773–785

    Article  CAS  Google Scholar 

  • Berner, R. A. 1970 Sedimentary pyrite formation Am. J. Sci. 268 1–23

    Article  CAS  Google Scholar 

  • Berner, R. A. 1974 Iron sulfides in Pleistocene deep Black Sea sediments and their palaeooceanographic significance In: E. T. Degens, and D. A. Ross (Eds.) The Black Sea: Geology, Chemistry and Biology AAPG Memoirs 20 American Association of Petroleum Geologists Tulsa, OK 524–531

    Google Scholar 

  • Bertani, L. E., J. S. Huang, B. A. Weir, and J. L. Kirschvink. 1997 Evidence for two types of subunits in the bacterioferretin of Magnetospirillum magnetotacticum Gene 201 31–36

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P. 1975 Magnetotactic bacteria Science 190 377–379

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P., D. Maratea, and R. S. Wolfe. 1979 Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium J. Bacteriol. 140 720–729

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P. 1982 Magnetotactic bacteria Ann. Rev. Microbiol. 36 217–238

    Article  CAS  Google Scholar 

  • Blakemore, R. P., K. A. Short, D. A. Bazylinski, C. Rosenblatt, and R. B. Frankel. 1985 Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum Geomicrobiol. J. 4 53–71

    Article  CAS  Google Scholar 

  • Blakemore, R. P., N. A. Blakemore, D. A. Bazylinski, and T. T. Moench. 1989 Magnetotactic bacteria In: J. T. Staley et al. (Eds.) [{http://www.cme.msu.edu/bergeys/}Bergey’s Manual of Systematic Bacteriology’ 3 Williams and Wilkins Baltimore, MD 1882–1889

    Google Scholar 

  • Bulte, J. W. M., and R. A. Brooks. 1997 Magnetic nanoparticles as contrast agents for imaging In: U. Häfeli, W. Schütt, J. Teller, and M. Zborowski (Eds.) Scientific and Clinical Applications of Magnetic Carriers Plenum Press New York, NY 527–543

    Google Scholar 

  • Burgess, J. G., R. Kawaguchi, T. Sakaguchi, R. H. Thornhill, and T. Matsunaga. 1993 Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rRNA sequences J. Bacteriol. 175 6689–6694

    PubMed  CAS  Google Scholar 

  • Bulte, J. W. M., and R. A. Brooks. 1997 Magnetic nanoparticles as contrast agents for imaging Häfeli, U., Schütt, W., Teller, J., Zborowski, M. Scientific and clinical applications of magnetic carriers Plenum Press New York 527–543

    Google Scholar 

  • Butler, R. F., and S. K. Banerjee. 1975 Theoretical single-domain grain size range in magnetite and titanomagnetite J. Geophys. Res. 80 4049–4058

    Article  CAS  Google Scholar 

  • Chang, S.-B. R., and J. L. Kirschvink. 1989aMagnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization Ann. Rev. Earth Planet Sci. 17 169–195

    Article  CAS  Google Scholar 

  • Chang, S.-B. R., J. F. Stolz, J. L. Kirschvink, and S. M. Awramik. 1989bBiogenic magnetite in stromatolites. 2: Occurrence in ancient sedimentary environments Precambrian Res. 43 305–312

    Article  CAS  Google Scholar 

  • Dean, A. J., and D. A. Bazylinski. 1999aCloning and sequencing of the form II ribulose bisphosphate carboxylase/oxygenase (rubisco) gene (cbbM) from the marine magnetotactic bacterium, strain MV-1 In: 96th Ann. Meet. Am. Soc. Microbiol. Abstr. H-207 369

    Google Scholar 

  • Dean, A. J., and D. A. Bazylinski. 1999bGenome analysis of several magnetotactic bacterial strains using pulsed-field gel electrophoresis Curr. Microbiol. 39 219–225

    Article  PubMed  CAS  Google Scholar 

  • De Graef, M. R., S. Alexeeva, J. L. Snoep, and M. J. T. De Mattos. 1999 The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli J. Bacteriol. 181 2351–2357

    PubMed  Google Scholar 

  • DeLong, E. F., R. B. Frankel, and D. A. Bazylinski. 1993 Multiple evolutionary origins of magnetotaxis in bacteria Science 259 803–806

    Article  PubMed  CAS  Google Scholar 

  • Devouard, B., M. Pósfai, X. Hua, D. A. Bazylinski, R. B. Frankel, and P. R. Buseck. 1998 Magnetite from magnetotactic bacteria: size distribution and twining Am. Mineral. 83 1387–1398

    CAS  Google Scholar 

  • Diaz-Rizzi, J. C., and J. L. Kirschvink. 1992 Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations J. Geophys. Res. 97 (B12) 17309–17315

    Google Scholar 

  • Dubbels, B. L., A. J. Dean, and D. A. Bazylinski. 1998 Approaches to and studies in understanding the molecular basis for magnetosome synthesis in magnetotactic bacteria 98th Ann. Meet. Am. Soc. Microbiol. In: Abstr. H-82 290

    Google Scholar 

  • Farina, M., H. Lins de Barros, D. Motta de Esquivel, and J. Danon. 1983 Ultrastructure of a magnetotactic microorganism Biol. Cell. 48 85–88

    Google Scholar 

  • Farina, M., D. M. S. Esquivel, and H. G. P. Lins de Barros. 1990 Magnetic iron-sulphur crystals from a magnetotactic microorganism Nature 343 256–258

    Article  CAS  Google Scholar 

  • Fassbinder, J. W. E., H. Stanjek, and H. Vali. 1990 Occurrence of magnetic bacteria in soil Nature 343 161–162

    Article  PubMed  CAS  Google Scholar 

  • Fassbinder, J. W. E., and H. Stanjek. 1993 Occurrence of bacterial magnetite in soils from archaeological sites Archaeologia Polona 31 117–128

    Google Scholar 

  • Frankel, R. B., G. C. Papaefthymiou, R. P. Blakemore, and W. O’Brien. 1983 Fe3O4 precipitation in magnetotactic bacteria Biochim. Biophys. Acta 763 147–159

    Article  CAS  Google Scholar 

  • Frankel, R. B., D. A. Bazylinski, M. S. Johnson, and B., L. Taylor. 1997 Magneto-aerotaxis in marine coccoid bacteria Biophys. J. 73 994–1000

    Article  PubMed  CAS  Google Scholar 

  • Frankel, R. B., D. A. Bazylinski, and D. Schüler. 1998 Biomineralization of magnetic iron minerals in magnetotactic bacteria J. Supramolecular Science 5 383–390

    Article  CAS  Google Scholar 

  • Funaki, M., H. Sakai, and T. Matsunaga. 1989 Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria J. Geomagn. Geoelectr. 41 77–87

    Article  Google Scholar 

  • Funaki, M., H. Sakai, T. Matsunaga, and S. Hirose. 1992 The S pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria Phys. Earth Planet. Int. 70 253–260

    Article  Google Scholar 

  • Futschik, H. Pfützner, A. Doblander, P. Schönhuber, T. Dobeneck, N. Petersen, and H. Vali. 1989 Why not use magnetotactic bacteria for domain analyses? Phys. Scr. 40 518–521

    Article  Google Scholar 

  • Gorby, Y. A., T. J. Beveridge, and R. P. Blakemore. 1988 Characterization of the bacterial magnetosome membrane J. Bacteriol. 170 834–841

    PubMed  CAS  Google Scholar 

  • Heywood, B. R., D. A. Bazylinski, A. J. Garratt-Reed, S. Mann, and R. B. Frankel. 1990 Controlled biosynthesis of greigite (Fe3O4) in magnetotactic bacteria Naturwiss. 77 536–538

    Article  Google Scholar 

  • Heywood, B. R., S. Mann, and R. B. Frankel. 1991 Structure, morphology and growth of biogenic greigite (Fe3S4) In: M. Alpert, P. Calvert, R. B. Frankel, P. Rieke, and D. Tirrell (Eds.) Materials Synthesis Based on Biological Processes Materials Research Society Pittsburgh, PA 93–108

    Google Scholar 

  • Huettel, M., S. Forster, S. Kloser, and H. Fossing. 1996 Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations Appl. Environ. Microbiol. 62 1863–1872

    PubMed  CAS  Google Scholar 

  • Iida, A., and J. Akai. 1996 Crystalline sulfur inclusions in magnetotactic bacteria Sci. Rep. Niigata Univ. Ser. E (Geology) 11 35–42

    Google Scholar 

  • Kawaguchi, R., J. G. Burgess, T. Sakaguchi, H. Takeyama, R. H. Thornhill, and T. Matsunaga. 1995 Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the β-Proteobacteria FEMS Microbiol. Lett. 126 277–282

    PubMed  CAS  Google Scholar 

  • Kimble, L. K., and D. A. Bazylinski. 1996 Chemolithoautotrophy in the marine magnetotactic bacterium, strain MV-1 In: Ann. Meet. Am. Soc. Microbiol. Abstr. K-174

    Google Scholar 

  • Mann, S., R. B. Frankel, and R. P. Blakemore. 1984aStructure, morphology and crystal growth of bacterial magnetite Nature 405 405–407

    Article  Google Scholar 

  • Mann, S., T. T. Moench, and R. J. P. Williams. 1984bA high resolution electron microscopic investigation of bacterial magnetite Proc. R. Soc. London B 221 385–393

    Article  Google Scholar 

  • Mann, S., N. H. C. Sparks, and R. P. Blakemore. 1987aUltrastructure and characterization of anisotropic inclusions in magnetotactic bacteria Proc. R. Soc. London B 231 469–476

    Article  Google Scholar 

  • Mann, S., N. H. C. Sparks, and R. P. Blakemore. 1987bStructure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria Proc. R. Soc. London B 231 477–487

    Article  Google Scholar 

  • Mann, S., and R. B. Frankel. 1989 Magnetite biomineralization in unicellular organisms In: S. Mann, J. Webb, and R. J. P. Williams (Eds.) Biomineralization: Chemical and Biochemical Perspectives VCH Publishers New York, NY 389–426

    Google Scholar 

  • Mann, S., N. C. H. Sparks, and R. G. Board. 1990aMagnetotactic bacteria: Microbiology, biomineralization, palaeomagnetism, and biotechnology Adv. Microbial Phys. 31 125–181

    Article  CAS  Google Scholar 

  • Mann, S., N. C. H. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch. 1990bBiomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium Nature 343 258–261

    Article  CAS  Google Scholar 

  • Mann, S., N. C. H. Sparks, and V. J. Wade. 1990cCrystallochemical control of iron oxide biomineralization In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 21–49

    Google Scholar 

  • Maratea, D., and R. P. Blakemore. 1981 Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum Int. J. Syst. Bacteriol. 31 452–455

    Article  Google Scholar 

  • Matsuda, T., J. Endo, N. Osakabe, A. Tonomura, and T. Arii. 1983 Morphology and structure of biogenic magnetite particles Nature 302 411–412

    Article  CAS  Google Scholar 

  • Matsunaga, T., and S. Kamiya. 1987 Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization Appl. Microbiol. Biotechnol. 26 328–332

    Article  CAS  Google Scholar 

  • Matsunaga, T. 1991aApplications of bacterial magnets Tibtech 9 91–95

    Article  CAS  Google Scholar 

  • Matsunaga, T., T. Sakaguchi, and F. Tadokoro. 1991bMagnetite formation by a magnetic bacterium capable of growing aerobically Appl. Microbiol. Biotechnol. 35 651–655

    Article  CAS  Google Scholar 

  • Matsunaga, T., C. Nakamura, J. G. Burgess, and S. Sode. 1992 Gene transfer in magnetic bacteria: Transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis J. Bacteriol. 174 2748–2753

    PubMed  CAS  Google Scholar 

  • Matsunaga, T., and N. Tsujimura. 1993 Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically Appl. Microbiol. Biotechnol. 39 368–371

    CAS  Google Scholar 

  • McFadden, B. A., and J. M. Shively. 1991 Bacterial assimilation of carbon dioxide by the Calvin cycle In: J. M. Shively, and L. L. Barton (Eds.) Variations in Autotrophic Life Academic Press San Diego, CA 25–49

    Google Scholar 

  • McKay, D. S., E. K. Gibson Jr., K. L. Thomas-Keprta, H. Vail, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare. 1996 Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001 Science 273 924–930

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, F. C., B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski. 1993aElectron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium Proc. R. Soc. London B 251 231–236

    Article  Google Scholar 

  • Meldrum, F. C., B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski. 1993bElectron microscopy study of magnetosomes in two cultured vibroid magnetotactic bacteria Proc. R. Soc. London B 251 237–242

    Article  Google Scholar 

  • Moench, T. T., and W. A. Konetzka. 1978 A novel method for the isolation and study of a magnetotactic bacterium Arch. Microbiol. 119 203–212

    Article  PubMed  CAS  Google Scholar 

  • Moench, T. T. 1988 Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus Ant. v. Leeuwenhoek 54 483–496

    Article  CAS  Google Scholar 

  • Nakamura, N., K. Hashimoto, and T. Matsunaga. 1991 Immunoassay method for the determination of immunoglobin G using bacterial magnetic particles Anal. Chem. 63 268–272

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, N., and T. Matsunaga. 1993aHighly sensitive detection of allergen using bacterial magnetic particles Anal. Chim. Acta 281 585–589

    Article  CAS  Google Scholar 

  • Nakamura, N., J. G. Burgess, K. Yagiuda, S. Kudo, T. Sakaguchi, and T. Matsunaga. 1993bDetection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles Anal. Chem. 65 2036–2039

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, C., T. Sakaguchi, S. Kudo, J. G. Burgess, K. Sode, and T. Matsunaga. 1993cCharacterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1 Appl. Biochem. Biotechnol. 39/40 169–177

    Article  Google Scholar 

  • Okuda, Y., K. Denda, and Y. Fukumori. 1996 Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum Gene 171 99–102

    Article  PubMed  CAS  Google Scholar 

  • Palache, C., H. Berman, and C. Frondel. 1944 Dana’s System of Mineralogy Wiley New York, NY 384

    Google Scholar 

  • Paoletti, L. C., and R. P. Blakemore. 1986 Hydroxamate production by Aquaspirillum magnetotacticum J. Bacteriol. 167 153–163

    Google Scholar 

  • Petersen, N., T. von Dobeneck, and H. Vali. 1986 Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean Nature 320 611–615

    Article  CAS  Google Scholar 

  • Pósfai, M., P. R. Buseck, D. A. Bazylinski, and R. B. Frankel. 1998aReaction sequence of iron sulfide minerals in bacteria and their use as biomarkers Science 280 880–883

    Article  PubMed  Google Scholar 

  • Pósfai, M., P. R. Buseck, D. A. Bazylinski, and R. B. Frankel. 1998bIron sulfides from magnetotactic bacteria: Structure, compositions, and phase transitions Am. Mineral. 83 1469–1481

    Google Scholar 

  • Rodgers, F. G., R. P. Blakemore, N. A. Blakemore, R. B. Frankel, D. A. Bazylinski, D. Maratea, and C. Rodgers. 1990aIntercellular structure in a many-celled magnetotactic prokaryote Arch. Microbiol. 154 18–22

    Article  Google Scholar 

  • Rodgers, F. G., R. P. Blakemore, N. A. Blakemore, R. B. Frankel, D. A. Bazylinski, D. Maratea, and C. Rodgers. 1990bIntercellular junctions, motility and magnetosome structure in a multicellular magnetotactic procaryote In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 239–255

    Google Scholar 

  • Sakaguchi, T., J. G. Burgess, and T. Matsunaga. 1993 Magnetite formation by a sulphate-reducing bacterium Nature 365 47–49

    Article  CAS  Google Scholar 

  • Schleifer, K. H., D. Schüler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig, and M. Köhler. 1991 The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov Sytem. Appl. Microbiol. 14 379–385

    Article  Google Scholar 

  • Schüler, D., and E. Baeuerlein. 1996 Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense Arch. Microbiol. 166 301–307

    Article  PubMed  Google Scholar 

  • Schüler, D., and E. Baeuerlein. 1998 Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense J. Bacteriol. 180 159–162

    PubMed  Google Scholar 

  • Schüler, D., S. Spring, and D. A. Bazylinski. 1999 Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization Syst. Appl. Microbiol. 22 466–471

    Article  PubMed  Google Scholar 

  • Sparks, N. H. C., S. Mann, D. A. Bazylinski, D. R. Lovley, H. W. Jannasch, and R. B. Frankel. 1990 Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium Earth Planet. Sci. Lett. 98 14–22

    Article  CAS  Google Scholar 

  • Spormann, A. M., and R. S. Wolfe. 1984 Chemotactic, magnetotactic, and tactile behaviour in a magnetic spirillum FEMS Microbiol. Lett. 22 171–177

    Article  CAS  Google Scholar 

  • Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, and N. Petersen. 1992 Phylogenetic diversity and identification of nonculturable magnetotactic bacteria Syst. Appl. Microbiol. 15 116–122

    Article  Google Scholar 

  • Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, H. van Gemerden, and N. Petersen. 1993 Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment Appl. Environ. Microbiol. 59 2397–2403

    PubMed  CAS  Google Scholar 

  • Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, D. Schüler, K. Poralla, and N. Petersen. 1994 Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria Syst. Appl. Microbiol. 17 501–508

    Article  Google Scholar 

  • Spring, S., U. Lins, R. Amann, K. H. Schleifer, L. C. S. Ferreira, D. M. S. Esquivel, and M. Farina. 1998 Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes Arch. Microbiol. 169 136–147

    Article  PubMed  CAS  Google Scholar 

  • Steinberger, B., N. Petersen, H. Petermann, and D. G. Weiss. 1994 Movement of magnetic bacteria in time-varying magnetic fields J. Fluid Mech. 273 189–211

    Article  Google Scholar 

  • Stolz, J. F., S.-B. R. Chang, and J. L. Kirschvink. 1986 Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments Nature 321 849–851

    Article  Google Scholar 

  • Stolz, J. F., D. R. Lovley, and S. E. Haggerty. 1990 Biogenic magnetite and the magnetization of sediments J. Geophys. Res. 95 4355–4361

    Article  Google Scholar 

  • Stolz, J. F. 1993 Magnetosomes J. Gen. Microbiol. 139 1663–1670

    Google Scholar 

  • Thornhill, R. H., J. G. Burgess, T. Sakaguchi, and T. Matsunaga. 1994 A morphological classification of bacteria containing bullet-shaped magnetic particles FEMS Microbiol. Lett. 115 169–176

    Article  Google Scholar 

  • Towe, K. M., and T. T. Moench. 1981 Electron-optical characterization of bacterial magnetite Earth Planet. Sci. Lett. 52 213–220

    Article  CAS  Google Scholar 

  • Vali, H., O. Förster, G. Amarantidis, and N. Petersen. 1987 Magnetotactic bacteria and their magnetofossils in sediments Earth Planet. Sci. Lett. 86 389–426

    Article  Google Scholar 

  • Wolfe, R. S., R. K. Thauer, and N. Pfennig. 1987 A capillary racetrack method for isolation of magnetotactic bacteria FEMS Microbiol. Lett. 45 31–35

    Article  Google Scholar 

  • Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963 Formation of methane by bacterial extracts J. Biol. Chem. 238 2882–2886

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

978-0-387-30742-8_26_MOESM1_ESM.mov

Sequence showing magnetotactic spirilla displaying axial magnetotaxis

978-0-387-30742-8_26_MOESM2_ESM.mov

Sequence showing magnetotactic cocci displaying polar magnetotaxis

Sequence showing the typical “ping-pong” motility of the MMP

Sequence showing magnetotactic spirilla displaying axial magnetotaxis

Sequence showing magnetotactic cocci displaying polar magnetotaxis

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Spring, S., Bazylinski, D.A. (2006). Magnetotactic Bacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_26

Download citation

Publish with us

Policies and ethics