Skip to main content

Laser Speckle Imaging of Cerebral Blood Flow

  • Reference work entry
  • First Online:
Book cover Handbook of Coherent Domain Optical Methods

Abstract

Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution could be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. Its applications on detecting the change in local CBF induced by sensory stimulation and the influence of a chemical agent to CBF are given. To improve the spatial resolution of current LSI, a modified LSI method is proposed. Dynamic of CBF under different temperatures is investigated by both methods and their results are compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Laser Speckle Imaging of Cerebral Blood Flow

  • K. U. Frerichs and G. Z. Feuerstein, “Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow,” Mol. Chem. Neuropathology 12, 55–61 (1990).

    Article  Google Scholar 

  • U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9, 589–596 (1989).

    Article  Google Scholar 

  • B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser Doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).

    Article  Google Scholar 

  • M. Lauritzen and M. Fabricius, “Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex,” Neuroreport 6, 1271–1273 (1995).

    Article  Google Scholar 

  • D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, “Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms” in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin ed. (SPIE Press, Bellingham, 2002), 987–1036.

    Google Scholar 

  • D. A. Zimnyakov and V. V. Tuchin, “Laser tomography” in: Medical Applications of Lasers, D. R. Vij and K. Mahesh eds. (Kluwer Academic Publishers, Boston, 2002), 147–194.

    Chapter  Google Scholar 

  • E. I. Galanzha, G. E. Brill, Y. Aizu, S. S. Ulyanov, and V. V. Tuchin, “Speckle and Doppler methods of blood and lymph flow monitoring” in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin ed. (SPIE Press, Bellingham, 2002), 881–937.

    Google Scholar 

  • R. Bullock, P. Statham, J. Patterson, D. Wyper, D. Hadley, and E. Teasdale, “The time course of vasogenic oedema after focal human head injury-evidence from SPECT mapping of blood brain barrier defects,” Acta Neurochirurgica (Supplement) 51, 286–288 (1990).

    Google Scholar 

  • M. Schröder, J. P. Muizelaar, R. Bullock, J. B. Salvant, and J. T. Povlishock, “Focal ischemia due to traumatic contusions, documented by SPECT, stable Xenon CT, and ultrastructural studies,” J Neurosurg. 82, 966–971 (1995).

    Article  Google Scholar 

  • A. Alavi, R. Dann, J. Chawluk, et al., “Positron emission tomography imaging of regional cerebral glucose metabolism,” Seminars in Nuclear Medicine 16, 2–34 (1996).

    Article  Google Scholar 

  • W. D. Heiss, O. Pawlik, K. Herholz et al., “Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose,” J. Cereb. Blood Flow Metab. 3, 250–253 (1984).

    Google Scholar 

  • L. P. Carter, “Surface monitoring of cerebral cortical blood flow,” Cerebrovasc. Brain Metab. Rev. 3, 246–261 (1991).

    Google Scholar 

  • C. A. Dickman, L. P. Carter, H. Z. Baldwin et al., “Technical report. Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma,” Neurosurgery 28, 467–472 (1991).

    Article  Google Scholar 

  • O. Sakurada, C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, “Sokoloff measurement of local cerebral blood flow with iodo [14C] antipyrine,” Am. J. Physiol. 234, H59–66 (1978).

    Article  Google Scholar 

  • D. S. Williams, J. A. Detre, J. S. Leigh et al., “Magnetic resonance imaging of perfusion using spin inversion of arterial water,” Proc. Natl. Acad. Sci. USA 89, 212–216 (1992).

    Article  ADS  Google Scholar 

  • F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma, and R. Turner, “Measuring cerebral blood flow using magnetic resonance imaging techniques,” J. Cereb. Blood Flow Metab. 19, 701–735 (1999).

    Article  Google Scholar 

  • A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–329 (1981).

    Article  ADS  Google Scholar 

  • J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).

    Article  ADS  Google Scholar 

  • K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129, 734–739 (2000).

    Article  Google Scholar 

  • B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method,” Med. Eng. Phys. 16, 105–111 (1994).

    Article  Google Scholar 

  • A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).

    Article  Google Scholar 

  • H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and A. M. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferernts in a migraine model,” Nat. Med. 8, 136–142 (2002).

    Article  Google Scholar 

  • J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).

    Article  Google Scholar 

  • R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).

    Article  ADS  Google Scholar 

  • Z. Wang, Q. M. Luo, H. Y. Cheng, W. H. Luo, H. Gong, and Q. Lu, “Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging,” Prog. Nat. Sci. (accepted).

    Google Scholar 

  • R. Greger and U. Windhorst, Comprehensive Human Physiology (Springer-Verlag, Berlin, 1996), 561–578.

    Book  Google Scholar 

  • A. C. Ngai, J. R. Meno, and H. R. Winn, “Simultaneous measurements of pial arteriolar diameter and Laser-Doppler Flow during somatosensory stimulation,” J. Cereb. Blood Flow Metab. 15, 124–127 (1995).

    Article  Google Scholar 

  • A. C. Silva, S. Lee, G. Yang, C. Iadecola, and S. Kim, “Simultaneous blood oxygenation level-dependent and cerebral blood flow function magnetic resonance imaging during forepaw stimulation in the rat,” J. Cereb. Blood Flow Metab., 19, 871–879 (1999).

    Article  Google Scholar 

  • T. Matsuura and I. Kanno, “Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats,” Neurosci. Res. 40, 281–290 (2001).

    Article  Google Scholar 

  • D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  ADS  Google Scholar 

  • M. E. Raichle, “Neuroenergetics: relevance for functional brain imaging” in Human Frontier Science Program (Strasbourg, Bureaux Europe, 2001), 65–68.

    Google Scholar 

  • R. D. Hall and E. P. Lindholm, “Organization of motor and somatosensory neocortex in the albino rat,” Brain Res. 66, 23–28 (1974).

    Article  Google Scholar 

  • A. C. Ngai, K. R. Ko, S. Morii, and H. R. Winn, “Effects of sciatic nerve stimulation on pial arterioles in rats,” Am. J. Physiol. 269, H133–H139 (1988).

    Google Scholar 

  • A. C. Ngai, M. A. Jolley, R. D'Ambrosio J. R. Meno, and H. R. Winn, “Frequency-dependent changes in cerebral blood flow and evoked by potentials during somatosensory stimulation in the rat,” Brain Res. 837, 221–228 (1999).

    Article  Google Scholar 

  • J. A. Detre, B. M. Ances, K. Takahashi, and J. H. Greenberg, “Signal averaged Laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex,” Brain Res. 796, 91–98 (1998).

    Article  Google Scholar 

  • R. Steinmeier, I. Bondar, C. Bauhuf, and R. Fahlbusch, “Laser Doppler flowmetry mapping of cerebrocortical microflow characteristics and limitations,” NeuroImage 15, 107–119 (2002).

    Article  Google Scholar 

  • G. Taubes, “Play of light opens a new window into the body,” Science 27, 1991–1993 (1997).

    Article  Google Scholar 

  • A. N. Bashkatov, E. A. Genina, V. I. Kochubey, Y. P. Sinichkin, A. A. Korobov, N. A. Lakodina, and V. V. Tuchin, “In vitro study of control of human dura mater optical properties by acting of osmotical liquids,” Proc SPIE 4162, 182–188 (2000).

    Article  ADS  Google Scholar 

  • A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and mannitol diffusion in human dura mater,” Biophys. J. 85, 3310–3318 (2003).

    Article  Google Scholar 

  • E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Select. Topics Quant. Electr. 2, 943–950 (1997).

    Article  ADS  Google Scholar 

  • I. F. Cilesiz and A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).

    Article  ADS  Google Scholar 

  • V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).

    Article  ADS  Google Scholar 

  • A. N. Bashkatov, I. L. Maksimova, T. N. Semyonova, V. V. Tuchin, and I. L. Kon, “Controlling of optical properties of sclera,” Proc. SPIE 2393, 137–141 (1995).

    Article  ADS  Google Scholar 

  • B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” App. Opt. 37, 764–771 (1998).

    Article  ADS  Google Scholar 

  • G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133–141 (1999).

    Article  Google Scholar 

  • G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers Surg Med. 29, 213–220 (2001).

    Article  Google Scholar 

  • H. Y. Cheng, Q. M. Luo, S. Q. Zeng, J. Cen, and W. X. Liang, “Optical dynamic imaging of the regional blood flow in the rat mesentery under the effect of noradrenalin,” Prog. Nat. Sci. 13, 198–201 (2003).

    Google Scholar 

  • H. Y. Cheng, Q. M. Luo, Z. Wang, and S. Q. Zeng, “Laser speckle imaging system of monitoring the regional velocity distribution,” Chinese J. Sci. Instr. (accepted).

    Google Scholar 

  • E. I. Galanzhal, V. V. Tuchin, A. V. Solovieva, T. V. Stepanova, Q. M. Luo, and H. Y. Cheng, “Skin backreflectance and microvascular system functioning at the action of osmotic agents,” J. Phys. D: Appl. Phys. 36, 1739–1746 (2003).

    Article  ADS  Google Scholar 

  • H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).

    Article  ADS  Google Scholar 

  • Y. R. Tran Dinh, C. Thurel, A. Serrie, G. Cunin, and J. Seylaz, “Glycerol injection into the trigeminal ganglion provokes a selective increase in human cerebral blood flow,” Pain 46, 13–16 (1991).

    Article  Google Scholar 

  • E. Jungermann and N. O. V. Sonntag, Glycerine: a Key Cosmetic Ingredient (New York, Marcel Dekker, 1991).

    Google Scholar 

  • J. B. Segur, “Uses of glycerine” in Glycerol, C. S. Miner and N. N. Dalton eds. (Reinhold Publishing, New York, 1953), 238–330.

    Google Scholar 

  • A. Grinvald, R. D. Frostig, R. M. Siegel, and E. Bartfeld, “High-resolution optical imaging of functional brain architecture in the awake monkey,” Proc. Natl. Acad. Sci. USA 88, 11559–11563 (1991).

    Article  ADS  Google Scholar 

  • L. M. Chen, B. Heider, G. V. Williams, F. L. Healy, B. M. Ramsden, and A. W. Roe, “A chamber and artificial dura method for long-term optical imaging in the monkey,” J. Neurosci. Meth. 113, 41–49 (2002).

    Article  Google Scholar 

  • H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “A modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. (accepted).

    Google Scholar 

  • H. Y. Cheng, D. Zhu, Q. M. Luo, S. Q Zeng, Z. Wang, and S. S. Ul'yanov, “Optical monitoring of the dynamic change of blood perfusion,” Chinese J. Lasers 30, 668–672 (2003) (in Chinese).

    Google Scholar 

  • J. Ohtsubo and T. Asakura, “Velocity measurement of a diffuse object by using time-varying speckles,” Opt. Quant. Electron. 8, 523–529 (1976).

    Article  ADS  Google Scholar 

  • J. D. Briers, “Laser Doppler and time-varying speckle: reconciliation,” J. Opt. Soc. Am. A. 13, 345–350 (1996).

    Article  ADS  Google Scholar 

  • P. S. Liu, The optical bases of speckle statistic (Science Press, Beijing, 1987) (in Chinese)

    Google Scholar 

  • M. Linden, H. Golster, S. Bertuglia, A. Colantuoni, F. Sjoberg, and G. Nilsson, “Evaluation of enhanced high-resolution laser Doppler imaging in an in vitro tube model with the aim of assessing blood flow in separate microvessel,” Microvasc. Res. 56, 261–270 (1998).

    Article  Google Scholar 

  • D. Kleinfeld, P. P. Mitra, F. Helmchen and W. Denk. “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    Article  ADS  Google Scholar 

  • A. Serov, W. Steenbergen, and F. D. Mul, “Laser Doppler perfusion with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27, 300–302 (2002).f

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Luo, Q., Cheng, H., Wang, Z., Tuchin, V.V. (2004). Laser Speckle Imaging of Cerebral Blood Flow. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics