Skip to main content

Quasi-Elastic Light Scattering in Ophthalmology

  • Reference work entry
  • First Online:
  • 706 Accesses

Abstract

The eye is not just a “window to the soul”, it can be considered a “window to the body” as well. The eye is built much like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type in the body. It is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. In the past few years, QELS instrumentation has become compact, more sensitive, flexible, and easy to use. These developments have made QELS an important tool in ophthalmic research where diseases can be detected early and non-invasively before the clinical symptoms appear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References to Quasi-Elastic Light Scattering in Ophthalmology

  • B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic Press, New York, 1991).

    Google Scholar 

  • T. Tanaka and G. B. Benedek, “Observation of protein diffusivity in intact human and bovine lenses with application to cataract,” Invest. Ophthal. Vis. Sci. 14 (6), 449–456 (1975).

    Google Scholar 

  • S. E. Bursell, P. C. Magnante, and L. T. Chylack, “In vivo uses of quasi-elastic light scattering spectroscopy as a molecular probe in the anterior segment of the eye,” Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters ed. (Springer-Verlag, New York, 1990) 342–3

    Chapter  Google Scholar 

  • R. R. Ansari, “Ocular static and dynamic light scattering: A non-invasive diagnostic tool for eye research and clinical practice,” J. Biomed. Opt. 9 (1) (2004).

    Google Scholar 

  • Vision Problems in the U.S.: Prevalence of Adult Vision and Age-Related Eye Disease in America, National Eye Institute (National Institutes of Health) and Prevent Blindness America (2002). Also available at www.usvisionproblems.org.

    Google Scholar 

  • G. W. Tate and A. Safiz, “The slit lamp, history, principle, and practice,” Duane's Clinical Ophthalmology 1 (59), W. Tasman and E. A. Jaeger ed. (J. B. Lippincott Co, Philadelphia, PA, 1992

    Google Scholar 

  • R. H. Stock and W. H. Ray, “Interpretation of photon correlation data: A comparison of analysis methods,” J. Polym. Sci. 23, 1393–1147 (1985).

    Google Scholar 

  • H. S. Dhadwal, R. R. Ansari, and M. A. Dellavecchia, “Coherent fiber optic sensor for early detection of cataractogenesis in a human eye lens,” Opt. Eng. 32 (2), 233–238 (1993).

    Article  ADS  Google Scholar 

  • L. Rovati, F. Fankhauser II, and J. Rick, “Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye,” Rev. Sci. Instrum. 67 (7) 2620 (1996).

    Article  ADS  Google Scholar 

  • R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, “A fiber optic probe for monitoring protein aggregation, nucleation and crystallization,” J. Crystal Growth 168, 216–226 (1996).

    Article  ADS  Google Scholar 

  • L. Pollonini, L. Rovati, R. R. Ansari, “Dynamic light scattering and natural fluorescence measurements in healthy and pathological ocular tissues,” SPIE Proc. 4611, 213–219 (2002).

    Article  ADS  Google Scholar 

  • M. B. Datiles III and R. R. Ansari, “Clinical evaluation of cataracts,” Duane's Clinical Ophthal. 73B, W. Tasman, and E. Jaeger eds. (Lippincott Co. Inc., Philadelphia, PA, 2003).

    Google Scholar 

  • M. B. Datiles III, R. R. Ansari, and G. F. Reed, “A Clinical study of the human lens with a dynamic light scattering device,” Exp. Eye Res. 74 (1), 93–102 (2002).

    Article  Google Scholar 

  • A. Foster, “Cataract-A global perspective: output, outcome and outlay,” Eye 3, 449–53 (1999).

    Article  Google Scholar 

  • C. Kupfer, “Bowman lecture. The Conquest of Cataract: A Global Challenge,” Trans. Ophthal. Soc. 104 (1), 1–10 (1984).

    MathSciNet  Google Scholar 

  • J. J. Harding, “Drugs,” Aging 18 (7), 473–86 (2001).

    Google Scholar 

  • G. B. Benedek, J. Pande, G. M. Thurston, and J. L. Clark, “Theoretical and experimental basis for the inhibition of cataract,” Prog. Retin. Eye Res. 18, 391–402 (1999).

    Article  Google Scholar 

  • G. M. Thurston, D. L. Hayden, P. Burrows, J. I. Clark, V. G. Taret, J. Kandel, M. Courogen, J. A. Peetermans, M. S. Bowen, D. Miller, K. M. Sullivan, R. Storb, H. Stern, and G. B. Benedek, “Quasielastic light scattering study of the living human lens as a function of age,” Curr. Eye Res. 16 (3), 197–207 (1997).

    Article  Google Scholar 

  • H. Dhadwal and J. Wittpen, “In vivo dynamic light scattering characterization of the human lens: cataract index,” Curr. Eye Res. 20 (6), 502–510 (2000).

    Article  Google Scholar 

  • R. R. Ansari, J. I. Clark, J. F. King, and T. Seeberger, “Early detection of cataracts and response to therapy with non-invasive static and dynamic light scattering,” Proc. SPIE 4951, 168–176 (2003).

    Article  ADS  Google Scholar 

  • J. I. Clark, J. C. Livesey, and J. E. Steele, “Delay or inhibition of rat lens opacification using pantethine and WR-77913,” Exp. Eye Res. 62, 75–85 (1996).

    Article  Google Scholar 

  • F. A. Bettelheim, R. R. Ansari, Q-F. Cheng, and J. S. Zigler Jr., “The mode of chaperoning of dithiothreitol-denatured alpha lactalbumin by alpha crystallin,” Biochem. Biophys. Res. Commun. 261, 292–297 (1999).

    Article  Google Scholar 

  • J. S. Zigler Jr., P. Russel, S. Tumminia, C. Qin, and C. M. Krishna, “Hydroxylamine compositions for the prevention or retardation of cataracts,” U.S. Patent 6,001,853 (Dec. 14, 1999).

    Google Scholar 

  • J. S. Zigler Jr., C. Qin, T. Kamiya, M. C. Krishna, Q. Cheng, S. Tumminia, and P. Russell, “Tempol-H inhibits opacification of lenses in organ culture,” Free Radical Biol. Med., in press (2003).

    Google Scholar 

  • V. M. Chenault, M. N. Ediger, and R. R. Ansari, “In vivo assessment of diabetic lenses using dynamic light scattering,” Diab Tech & Ther. 4 (5), 651–659 (2002).

    Article  Google Scholar 

  • R. R. Ansari, K. I. Suh, S. Dunker, N. Kitaya, and J. Sebag, “Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering,” Exp. Eye Res. 73, 859–866 (2001).

    Article  Google Scholar 

  • L. Rovati, F. Fankhauser II, F. Docchio, and J. Van Best, “Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence,” J. Biomed. Opt. 3 (3), 357–363 (1998).

    Article  ADS  Google Scholar 

  • R. Klein, B. E. K. Klein, and S. E. Moss, “Visual impairment in diabetes,” Ophthalmol. 91, 1–9 (1984).

    Article  Google Scholar 

  • M. Brownlee, “The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy,” Complications of Diabetes Mellitus, B. Drazin, S. Melmed, and LeRioth eds. (Alan R. Liss, New York, 1989), 9–

    Google Scholar 

  • J. Sebag, “Abnormalities of human vitreous structure in diabetes,” Graef. Arch. Clin. Exp. Ophthalmol. 231, 257–260 (1993).

    Article  Google Scholar 

  • J. Sebag “Diabetic vitreopathy [guest editorial],” Ophthalmol. 103, 205–206 (1996).

    Article  Google Scholar 

  • J. Sebag, The Vitreous–Structure, Function, and Pathobiology (Springer-Verlag, New York, 1989).

    Google Scholar 

  • J. Sebag, “Age-related changes in human vitreous structure,” Graef. Arch. Clin. Exp. Ophthalmol. 225, 89–93 (1987).

    Article  Google Scholar 

  • J. Sebag, R. R. Ansari, S. Dunker, and K. I. Suh, “Dynamic light scattering of diabetic vitreopathy,” Diabetes Technology & Therapeutics 1 (2), 169–176 (1999).

    Article  Google Scholar 

  • J. Aguayo, B. Glaser, A. Mildvan, H. M. Cheng, R. G. Gonzalez, and T. Brady, “Study of the vitreous liquefaction by NMR spectroscopy and imaging,” Invest. Ophthal. Vis. Sci. 26, 692–697 (1985).

    Google Scholar 

  • C. W. Oyster, The Human Eye Structure and Function (Sinauer Associates, Inc., Sunderland, MA, 1999).

    Google Scholar 

  • S. D. McLeod, “Beyond Snellen acuity: The assessment of visual function after refractive surgery,” Arch. Ophthalmol. 119, 1371–1373 (2001).

    Article  Google Scholar 

  • L. B. Sabbagh, “Dynamic light scattering focuses on the cornea,” Rev. Ref. Surgery. (5) 28–31 (2002).

    Google Scholar 

  • R. R. Ansari, A. K. Misra, A. B. Leung, J. F. King, and M. B. Datiles III, “Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering,” Proc. SPIE 4611, 220–229 (2002).

    Article  ADS  Google Scholar 

  • B. M. Palmquist, B. Philipson, and P. O. Barr, “Nuclear cataract and myopia during hyperbaric oxygen therapy,” British J. Ophthalmol. 68, 113–117 (1984).

    Article  Google Scholar 

  • V. A. Padgaonkar, L. R. Lin, V. R. Leverenz, A. Rinke, V. N. Reddy, and F. J. Goblin, “Hyperbaric oxygen in vivo accelerates the loss of cytoskeletal proteins and MIP26 in guinea pig lens nucleus,” Exp. Eye. Res. 68, 493–504 (1999).

    Article  Google Scholar 

  • P. H. Frederikse, D. Garland, J. S. Zigler, and J. Piatigorsky, “Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (A beta) in mammalian lenses, and A beta has toxic effects on lens epithelial cells, J. Biol. Chem. 271 (17), 10169–10174 (1996).

    Article  Google Scholar 

  • P. H. Frederikse, “Amyloid-like protein structure in mammalian ocular lenses,” Curr. Eye Res. 20 (6), 462–468 (2000).

    Article  Google Scholar 

  • L. Goldstein, J. Muffat, R. Cherny, K. Faget, J. Coccia, F. Fraser, C. Masters, R. Tanzi, L. Chylack Jr., and A. Bush, “α Beta peptides in human and amyloyd-bering transgenic mouse lenses: implications for alzheimer's disease and cataracts,” Invest. Ophthalmol. Vis. Sci. 42 (2) ARVO abstract 1614 (2001).

    Google Scholar 

  • F. A. Cucinotta, F. K. Manuel, J. Jones, G. Izard, J. Murrey, B. Djojonegro, and M. Wear, “Space radiation and cataracts in astronauts.” Radiation Research 156 (5), 460–466 (2001)

    Article  ADS  Google Scholar 

  • Z. N. Rastegar, P. Eckart, and M. Mertz, “Radiation-induced cataract in astronauts and cosmonauts,” Graef. Arch. Clinl Exp. Ophthalmol. 240 (7), 543–7 (2002).

    Article  Google Scholar 

  • R. R. Ansari, L. Rovati, and J. Sebag, “Non-invasive and remote detection of cataracts during space exploration with dynamic light scattering,” Ophthalmic Technologies XI 4245, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, Bellingham, 2001) 129–134.

    Chapter  Google Scholar 

  • R. R. Ansari, L. Rovati, and J. Sebag, “Celestial and terrestrial tele-ophthalmology: A health monitoring helmet for astronauts/cosmonauts and general public use,” Ophthalmic Technologies XI 4245, F. Manns, P. G. Soderberg, and A. Ho, eds. (SPIE, Bellingham, 2001), 177–1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ansari, R.R. (2004). Quasi-Elastic Light Scattering in Ophthalmology. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics