Skip to main content

Quantum Dots in Flow Cytometry

  • Protocol
Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 374))

  • 2001 Accesses

Abstract

The development of new fluorophores has experienced a tremendous advance over the last two decades. The unique photophysical properties of quantum dots (QDs), such as their large Stokes shifts and exceptional brightness, make them attractive probes in flow cytometry applications. In this chapter, the spectral overlap and the fluorescence intensity of a single Qdot nanocrystal species (Qdot-655) was investigated in the context of a panel containing conventional fluorophores. Certain compensation issues remain because of the unique absorption characteristics of QDs. To demonstrate the potential of QDs for multicolor flow cytometry, human lymphocytes were surface stained with an eight-color panel where one of its standard violet laser reagents, CD4 AmCyan, was substituted with the CD4 Qdot-655 conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henglein, A. (1982) Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J. Phys. Chem. 86, 2291–2293.

    Article  CAS  Google Scholar 

  2. Brus, L. E. (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571.

    Article  CAS  Google Scholar 

  3. Spanhel, L., Haase, M., Weller, H., and Henglein, A. (1987) Photochemistry of colloidal semiconductors. Surface modification and stability of strong luminescing CdS particles. J. Amer. Chem. Soc. 109, 5649–5662.

    Article  CAS  Google Scholar 

  4. Hines, M. A. and Guyot-Sionnest, P. (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471.

    Article  CAS  Google Scholar 

  5. Dabbousi, R. O., Rodriguez-Viejo, J., Mikulec, F. V., et al. (1997) (CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.

    Article  CAS  Google Scholar 

  6. Peng, X., Schlamp, M. C., Kadavanich, A. V., and Alivisatos, A. P. (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Amer. Chem. Soc. 119, 7019–7029.

    Article  CAS  Google Scholar 

  7. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2015.

    Article  CAS  PubMed  Google Scholar 

  8. Chan, W. C. W. and Nie, S. (1998) Quantum dots bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  CAS  PubMed  Google Scholar 

  9. Doose, S. (2003) Single molecule characterization of photophysical and colloidal properties of biocompatible quantum dots. Dissertation, Ruprecht-Karls University, Heidelberg, Germany.

    Google Scholar 

  10. Abrams, B. and Dubrovsky, T. (2005) Evaluation of the new Qdot-655 conjugates. Unpublished results.

    Google Scholar 

  11. Larson, D. R., Zipfel, W. R., Williams, R. M., et al. (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436.

    Article  CAS  PubMed  Google Scholar 

  12. Roederer, M., DeRosa, S., Gerstein, R., et al. (1997) 8 color 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity. Cytometry 29, 328–339.

    Article  CAS  PubMed  Google Scholar 

  13. Perfetto, S. P., Chattopadhyay, P. K., and Roederer, M. (2004) Seventeen-color flow cytometry: unraveling the immune system. Nature 4, 648–655.

    CAS  Google Scholar 

  14. Nomura, L. E., Emu, B., Hoh, R., et al. (2005) Independent loss of IL-2 production and altered differentiation of HIV-specific CD8+ T cells. J. Immunol. (submitted for publication).

    Google Scholar 

  15. Maino, V. C. and Maecker, H. T. (2004) Cytokine flow cytometry: a multiparametric approach for assessing cellular immune responses to viral antigens. Clin. Immunol. 110, 222–231.

    Article  CAS  PubMed  Google Scholar 

  16. Maecker, H. T. (2004) Cytokine flow cytometry. In: Methods in Molecular Biology: Flow Cytometry Protocols, (Hawley, T. S. and Hawley, R.G., eds.), Humana, Totowa, NJ, pp. 95–107.

    Chapter  Google Scholar 

  17. Suni, M. A., Dunn, H. S., Orr, P. L., et al. (2003) Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunology 4, 9–21.

    Article  PubMed  Google Scholar 

  18. Davis, K. A., Abrams, B., Iyer, S. B., Hoffman, R. A., and Bishop, J. E. (1998) Determination of CD4 antigen density on cells: role of antibody valency, avidity, clones, and conjugation. Cytometry 33, 197–205.

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro, H. M. (2003) Practical Flow Cytometry, 4th ed., Wiley-Liss, New York.

    Book  Google Scholar 

  20. Roederer, M. (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45, 194–205.

    Article  CAS  PubMed  Google Scholar 

  21. Bigos, M., Stovel, R., and Parks, D. (2004) Evaluating multi-color fluorescence data quality among different instruments and different laser powers-methods and results. Cytometry 59A, 42.

    Google Scholar 

  22. Maecker, H. T., Frey, T., Nomura, L. E., and Trotter, J. (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry 62A, 169–173.

    Article  Google Scholar 

  23. Bishop, J. E., Dickerson, J., Stall, A., et al. (2004) A setup system for compensation BD CompBeads plus BD FACSDiva Software. BD Biosciences White Paper, San Jose, CA.

    Google Scholar 

  24. Glazer, A. N. (1981) Photosynthetic accessory proteins with bilin prosthetic groups. The Biochemistry of Plants 8, 51–96.

    CAS  Google Scholar 

  25. Prézelin, B. B. and Haxo, F. T. (1976) Purification and characterization of peridinin chlorophyll-a proteins from the marine dinoflagellates Glenodinium sp. and Gonyaulax polyedra. Planta 128, 133–141.

    Article  Google Scholar 

  26. Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.

    Article  CAS  PubMed  Google Scholar 

  27. Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., et al. (2002) A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Letters 511, 11–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Abrams, B., Dubrovsky, T. (2007). Quantum Dots in Flow Cytometry. In: Bruchez, M.P., Hotz, C.Z. (eds) Quantum Dots. Methods in Molecular Biology, vol 374. Humana Press. https://doi.org/10.1385/1-59745-369-2:185

Download citation

  • DOI: https://doi.org/10.1385/1-59745-369-2:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-562-0

  • Online ISBN: 978-1-59745-369-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics