Quantum Dots pp 207-227 | Cite as

Luminescent Biocompatible Quantum Dots

A Tool for Immunosorbent Assay Design
  • Ellen R. Goldman
  • H. Tetsuo Uyeda
  • Andrew Hayhurst
  • Hedi Mattoussi
Part of the Methods in Molecular Biology book series (MIMB, volume 374)

Abstract

We have developed several conjugation strategies based on noncovalent self-assembly for the attachment of proteins and other biomolecules to water-soluble luminescent colloidal semiconductor nanocrystals (quantum dots [QDs]). The resulting QD-protein conjugates were employed in designing a variety of bioinspired applications, including single and multiplexed immunosorbent assays to detect toxins and small molecule explosives. In these studies we showed that QD fluorophores offer several important advantages. In particular, their tunable broad excitation spectra combined with narrow fluorescence emission peaks permit single-line excitation of multiple color nanocrystals, with facile signal deconvolution to extract individual contributions from each population (e.g., size) of QDs in multiplexed assays. Furthermore, the QDs strong resistance to photobleaching under continuous illumination relative to many organic dyes makes them ideal fluorophores for long-term cellular imaging studies. This chapter details the materials and methods for the synthesis of surface-functionalized CdSe-ZnS core-shell QDs, the construction and preparation of recombinant proteins, the conjugation of antibodies (and antibody fragments) to QDs, and the use of antibody-conjugated QDs in fluoroimmunoassays.

Key Words

QD fluorophores QD-antibody conjugates fluoroimmunoassay competition assay 

References

  1. 1.
    Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.PubMedCrossRefGoogle Scholar
  2. 2.
    Chan, W. C. W. and Nie, S. M. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.PubMedCrossRefGoogle Scholar
  3. 3.
    Mattoussi, H., Mauro, J. M., Goldman, E. R., et al. (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12,142–12,150.CrossRefGoogle Scholar
  4. 4.
    Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715.CrossRefGoogle Scholar
  5. 5.
    Murray, C. B., Kagan, C. K., and Bawendi, M. G. (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610.CrossRefGoogle Scholar
  6. 6.
    Hines, M. A. and Guyot-Sionnest, P. (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471.CrossRefGoogle Scholar
  7. 7.
    Dabbousi, B. O., Rodrigez-Viejo, J., Mikulec, F. V., et al. (1997) (CdSe)ZnS coreshell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.CrossRefGoogle Scholar
  8. 8.
    Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622.CrossRefGoogle Scholar
  9. 9.
    Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., and Mattoussi, H. (2005) Design of water-soluble quantum dots with novel surface ligands for biological applications. J. Am. Chem. Soc. 127, 3870–3878.PubMedCrossRefGoogle Scholar
  10. 10.
    Jaiswal, J. K., Mattoussi, H., Mauro, J. M., and Simon, S. M. (2003) Long-term multiple color imaging of live cells using quantum dots bioconjugates. Nature Biotech. 21, 47–51.CrossRefGoogle Scholar
  11. 11.
    Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T., and Mauro, J. M. (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847.PubMedCrossRefGoogle Scholar
  12. 12.
    Goldman, E. R., Balighian, E. D., Mattoussi, H., et al. (2002) Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124, 6378–6382.PubMedCrossRefGoogle Scholar
  13. 13.
    Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 589–599.CrossRefGoogle Scholar
  14. 14.
    Chaga, G., Hopp, J., and Nelson, P. (1999) Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol. Appl. Biochem. 29, 19–24.PubMedGoogle Scholar
  15. 15.
    Hainfeld, J. F., Liu, W., Halsey, C. M. R., Freimuth, P., and Powell, R. D. (1999) Ni-NTA-gold clusters target His-tagged proteins. J. Struct. Biol. 127, 185–198.PubMedCrossRefGoogle Scholar
  16. 16.
    Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for protins and peptides containing neighboring histidine-residues. J. Chromatogr. 411, 177–184.PubMedCrossRefGoogle Scholar
  17. 17.
    Hochuli, E., Bannwarth, W., Dobeli, W., Gentz, R., and Stueber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6, 1321–1325.CrossRefGoogle Scholar
  18. 18.
    Goldman, E. R., Medintz, I. L., Hayhurst, A., et al. (2005) Self-assembled luminescent CdSe-ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Analytica Chimica Acta. 534, 53–67.CrossRefGoogle Scholar
  19. 19.
    Goldman, E. R., Medintz, I. L., Whitley, J. L., et al. (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based tnt sensor. J. Am. Chem. Soc. 127, 6744–6751.PubMedCrossRefGoogle Scholar
  20. 20.
    Peng, Z. A. and Peng, X. G. (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184.PubMedCrossRefGoogle Scholar
  21. 21.
    Qu, L., Peng, Z. A., and Peng, X. G. (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333–337.CrossRefGoogle Scholar
  22. 22.
    Gunsalus, I. C., Barton, L. S., and Gruber, W. J. (1956) Biosynthesis and structure of lipoic acid derivatives. J. Am. Chem. Soc. 78, 1763–1768.CrossRefGoogle Scholar
  23. 23.
    O’Shea, E. K., Lumb, K. J., and Kim, P. S. (1993) Peptide velcro-design of a heterodimeric coiled-coil. Curr. Biol. 3, 658–667.CrossRefGoogle Scholar
  24. 24.
    Chang, H. C., Bao, Z. Z., Yao, Y., et al. (1994) A general-method for facilitating heterodimeric pairing between 2 proteins-applications to expression of alpha-T-cell and beta-T-cell receptor extracellular segments. Proc. Natl. Acad. Sci. USA 91, 11,408–11,412.PubMedCrossRefGoogle Scholar
  25. 25.
    Goldman, E. R., Clapp, A. R., Anderson, G. P, et al. (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Ellen R. Goldman
    • 1
  • H. Tetsuo Uyeda
    • 2
  • Andrew Hayhurst
    • 3
  • Hedi Mattoussi
    • 2
  1. 1.Center for Bio/Molecular Science and EngineeringNaval Research LaboratoryWashington
  2. 2.Division of Optical SciencesNaval Research LaboratoryWashington
  3. 3.Department of Virology and ImmunologySouthwest Foundation for Biomedical ResearchSan Antonio

Personalised recommendations