Quantum Dots pp 125-131 | Cite as

Measuring Cell Motility Using Quantum Dot Probes

  • Weiwei Gu
  • Teresa Pellegrino
  • Wolfgang J. Parak
  • Rosanne Boudreau
  • Mark A. Le Gros
  • A. Paul Alivisatos
  • Carolyn A. Larabell
Part of the Methods in Molecular Biology book series (MIMB, volume 374)

Abstract

The ability of cancer cells to migrate and metastasize is known to be directly related to tumor cell motility. Therefore, assaying the level of tumor cell motility is an excellent indicator of metastatic potential. We have developed an efficient and sensitive two-dimensional cell motility assay to image the phagokinetic uptake of colloidal CdSe/ZnS semiconductor nanocrystals (quantum dots [QDs]).

As cells move across a thin, homogeneous layer of QDs, they engulf and uptake the nanocrystals and leave behind a fluorescent-free trail. By measuring the ratio of trail area to cell area we have discovered that it is possible to distinguish between noninvasive and invasive cancer cells lines. This technique has, therefore, the potential to be used as a rapid, robust, and quantitative in vitro measure of metastatic potential. Because the technique only relies on fluorescence detection, requires no significant data processing, and is used with live cells, it is both rapid and straightforward.

Key Words

Fluorescent semiconductor nanocrystals quantum dots cell motility cell migration motility assay 

References

  1. 1.
    Partin, A. W., Schoeniger, J. S., Mohler, J. L., and Coffey, D. S. (1989) Fourier analysis of cell motility correlation of motility with metastatic potential. Proc. Natl. Acad. Sci. USA 86, 1254–1258.PubMedCrossRefGoogle Scholar
  2. 2.
    Albini, A., Iwamoto, Y., Kleinman, H. K., et al. (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239–3245.PubMedGoogle Scholar
  3. 3.
    Kramer, R. H., Bensch, K. G., and Wong, J. (1986) Invasion of reconstituted basement membrane by metastatic human tumor cells. Cancer Res. 46, 1980–1989.PubMedGoogle Scholar
  4. 4.
    Terranova, V. P., Hujanen, E. S., and Martin, G. R. (1986) Basement membrane and the invasive activity of metastatic tumor cells. J. Nat. Cancer Inst. 77, 311–316.PubMedGoogle Scholar
  5. 5.
    Rajah, T. T., Abidi, S. M. A., Rambo, D. J., Dmytryk, J. J., and Pento, J. T. (1998) The motile behavior of human breast cancer cells characterized by time-lapse videomicroscopy. In Vitro Cell. Dev. Biol. Anim. 34, 626–628.PubMedCrossRefGoogle Scholar
  6. 6.
    Albrecht-Buehler, G. (1977) The phagokinetic tracks of 3T3 cells. Cell 11, 395–404.PubMedCrossRefGoogle Scholar
  7. 7.
    Albrecht-Buehler, G. (1977) The phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12, 333–339.PubMedCrossRefGoogle Scholar
  8. 8.
    Parak, W. J., Boudreau, R., Le Gros, M., et al. (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mat. 14, 882–885.CrossRefGoogle Scholar
  9. 9.
    Pellegrino, T., Parak, W. J., Boudreau, R., et al. (2003) Quantum dot-based cell motility assay. Differentiation 71, 542–548.PubMedCrossRefGoogle Scholar
  10. 10.
    Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993) Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J. Amer. Chem. Soc. 115, 8706–8715.CrossRefGoogle Scholar
  11. 11.
    Hines, M. A. and Cuyostsionnest, P. (1996) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51.Google Scholar
  12. 12.
    Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., et al. (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.CrossRefGoogle Scholar
  13. 13.
    Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937.CrossRefGoogle Scholar
  14. 14.
    Gerion, D., Pinaud, F., Williams, S. C., et al. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Weiwei Gu
    • 1
  • Teresa Pellegrino
    • 2
  • Wolfgang J. Parak
    • 2
  • Rosanne Boudreau
    • 3
  • Mark A. Le Gros
    • 3
  • A. Paul Alivisatos
    • 3
    • 4
  • Carolyn A. Larabell
    • 1
    • 3
  1. 1.Department of AnatomyUniversity of California, San FranciscoSan Francisco
  2. 2.Department of ChemistryUniversity of California, BerkeleyBerkeley
  3. 3.Physical Bioscience DivisionLawrence Berkeley National LaboratoryBerkeley
  4. 4.Materials Science Division, Department of ChemistryUniversity of CaliforniaBerkeley

Personalised recommendations