Skip to main content

Retention Time Prediction and Protein Identification

  • Protocol
  • 3078 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 367))

Abstract

Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243.

    PubMed  CAS  Google Scholar 

  2. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.

    Article  PubMed  CAS  Google Scholar 

  3. Whitehouse, C. M., Dreyer, R. N., Yamashita, M., and Fenn, J. B. (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57, 675–679.

    Article  PubMed  CAS  Google Scholar 

  4. Stacey, C. C., Kruppa, G. H., Watson, C. H., et al. (1994) Reverse-phase liquid chromatography/electrospray-ionization Fourier-transform mass spectrometry in the analysis of peptides. Rapid Commun. Mass Spectrom. 8, 513–516.

    Article  CAS  Google Scholar 

  5. Voyksner, R. D. (1997) Combining liquid chromatography with electrospray mass spectrometry, in: Electrospray Ionization Mass Spectrometry, (Cole, R. B., ed.), John Wiley and Sons, New York, pp. 323–341.

    Google Scholar 

  6. Jensen, P. K., Pasa-Tolic, L., Peden, K. K., et al. (2000) Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis 21, 1372–1380.

    Article  PubMed  CAS  Google Scholar 

  7. Smith, R. D., Pasa-Tolic, L., Lipton, M. S., et al. (2001) Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis 22, 1652–1668.

    Article  PubMed  CAS  Google Scholar 

  8. Shen, Y., Tolic, N., Zhao, R., et al. (2001) High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line highperformance ESI FTICR mass spectrometry. Anal. Chem. 73, 3011–3021.

    Article  PubMed  CAS  Google Scholar 

  9. Conrads, T. P., Alving, K., Veenstra, T. D., et al. (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem. 73, 2132–2139.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, R. D., Anderson, G. A., Lipton, M. S., et al. (2002) The use of accurate mass tags for high-throughput microbial proteomics. Omics 6, 61–90.

    Article  PubMed  CAS  Google Scholar 

  11. Frenz, J., Hancock, W. S., Henzel, W. J., and Horváth, C. (1990) Reversed phase chromatography in analytical biotechnology of proteins, in HPLC of Biological Macromolecules: Methods and Applications, (Gooding, M. and Regnier, F. E., ed.), Marcel Dekker, New York, pp. 145–177.

    Google Scholar 

  12. Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L., Berzofsky, J. A., and DeLisi, C. (1987) Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195, 659–685.

    Article  PubMed  CAS  Google Scholar 

  13. Zubarev, R. A., Håkansson, P., and Sundqvist, B. U. R. (1996) Accuracy requirements for peptide characterization by monoisotopic mass measurements. Anal. Chem. 68, 4060–4063.

    Article  CAS  Google Scholar 

  14. Conrads, T. P., Anderson, G. A., Veenstra, T. D., Pasa-Tolic, L., and Smith, R. D. (2000) Utility of accurate mass tags for proteome-wide protein identification. Anal. Chem. 72, 3349–3354.

    Article  PubMed  CAS  Google Scholar 

  15. Bruce, J. E., Anderson, G. A., Wen, J., Harkewicz, R., and Smith, R. D. (1999) High-mass-measurement accuracy and 100% sequence coverage of enzymatically digested bovine serum albumin from an ESI-FTICR mass spectrum. Anal. Chem. 71, 2595–2599.

    Article  PubMed  CAS  Google Scholar 

  16. Palmblad, M., Ramström, M., Markides, K. E., Håkansson, P., and Bergquist, J. (2002) Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. Anal. Chem. 74, 5826–5830.

    Article  PubMed  CAS  Google Scholar 

  17. Hodges, R. S., Parker, J. M., Mant, C. T., and Sharma, R. R. (1988) Computer simulation of high-performance liquid chromatographic separations of peptide and protein digests for development of size-exclusion, ion-exchange and reversed-phase chromatographic methods. J. Chromatogr. 458, 147–167.

    Article  PubMed  CAS  Google Scholar 

  18. Hearn, M. T., Aguilar, M. I., Mant, C. T., and Hodges, R. S. (1988) High-performance liquid chromatography of amino acids, peptides and proteins. LXXXV. Evaluation of the use of hydrophobicity coefficients for the prediction of peptide elution profiles. J. Chromatogr. 438, 197–210.

    Article  PubMed  CAS  Google Scholar 

  19. Mant, C. T., Zhou, N. E., and Hodges, R. S. (1989) Correlation of protein retention times in reversed-phase chromatography with polypeptide chain length and hydrophobicity. J. Chromatogr. 476, 363–375.

    Article  PubMed  CAS  Google Scholar 

  20. Petritis, K., Kangas, L. J., Ferguson, P. L., et al. (2003) Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Anal. Chem. 75, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  21. Strittmatter, E. F., Ferguson, P. L., Tang, K., and Smith, R. D. (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 980–991.

    Article  PubMed  CAS  Google Scholar 

  22. Strittmatter, E. F., Kangas, L. J., Petritis, K., et al. (2004) Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. J. Proteome Res. 3, 760–769.

    Article  PubMed  CAS  Google Scholar 

  23. Qian, W. J., Liu, T., Monroe, M. E., et al. (2005) Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J. Proteome Res. 4, 53–62.

    Article  PubMed  CAS  Google Scholar 

  24. Nilsson, S., Ramstrom, M., Palmblad, M., Axelsson, O., and Bergquist, J. (2004) Explorative study of the protein composition of amniotic fluid by liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res. 3, 884–889.

    Article  PubMed  CAS  Google Scholar 

  25. Palmblad, M., Ramstrom, M., Bailey, C. G., McCutchen-Maloney, S. L., Bergquist, J., and Zeller, L. C. (2004) Protein identification by liquid chromatography-mass spectrometry using retention time prediction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 803, 131–135.

    Article  PubMed  CAS  Google Scholar 

  26. The Cygwin homepage. http://www.cygwin.com. Last accessed 05/26/2006.

  27. Matthiesen, R., Bunkenborg, J., Stensballe, A., Jensen, O. N., Welinder, K. G., and Bauw, G. (2004) Database-independent, database-dependent, and extended interpretation of peptide mass spectra in VEMS V2.0. Proteomics 4, 2583–2593.

    Article  PubMed  CAS  Google Scholar 

  28. Finney, G., Merrihew, G., Klammer, A., and MacCoss, M. (2004) Protein False Discovery Rates from MS/MS experiments: Decoy Databases and Normalized Cross-Correlation. 52nd American Society for Mass Spectrometry conference on Mass Spectrometry, May 23–27, 2004 Nashville, TN.

    Google Scholar 

  29. Meek, J. L. (1980) Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc. Natl. Acad. Sci. USA 77, 1632–1636.

    Article  PubMed  CAS  Google Scholar 

  30. Sanz-Nebot, V., Toro, I., Benavente, F., and Barbosa, J. (2002) pKa values of peptides in aqueous and aqueous-organic media. Prediction of chromatographic and electrophoretic behaviour. J. Chromatogr. A 942, 145–156.

    Article  PubMed  CAS  Google Scholar 

  31. Rost, B. (2001) Review: protein secondary structure prediction continues to rise. J. Struct. Biol. 134, 204–218.

    Article  PubMed  CAS  Google Scholar 

  32. Palmblad, M. (2002) Identification and characterization of peptides and proteins using Fourier transform ion cyclotron resonance mass spectrometry. PhD thesis, 05/17/2002, Uppsala Universitet, Uppsala, Sweden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Palmblad, M. (2007). Retention Time Prediction and Protein Identification. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 367. Humana Press. https://doi.org/10.1385/1-59745-275-0:195

Download citation

  • DOI: https://doi.org/10.1385/1-59745-275-0:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-563-7

  • Online ISBN: 978-1-59745-275-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics