Skip to main content

Genome-Scale Discovery and Characterization of Class-Specific Protein Sequences

An Example Using the Protein Phosphatases of Arabidopsis thaliana

  • Protocol
Protein Phosphatase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 365))

Abstract

The increasing pace of acquisition of fully sequenced genomes makes desirable a program of discovery and characterization of protein sequences of biologically significant structural classes. An example is protein phosphatases, involved in modulating reversible protein phosphorylation events underlying the whole gamut of cellular biology. The ready availability of software that can be downloaded to run on a personal computer, or accessed on a server via the Web, allows appropriate sequences to be collected and analyzed. A process is outlined here that has been successfully employed in the description of the genomic complement of protein phosphatase catalytic subunits from the model plant Arabidopsis thaliana. However, the methods are general and readily adapted to deal with any desired class of protein, from any organism of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Z.-Y. (2001) Protein tyrosine phosphatases: prospects for therapeutics. Curr. Opin. Chem. Biol. 5, 416–423.

    Article  PubMed  CAS  Google Scholar 

  2. Alonso, A., Sasin, J., Bottini, N., et al. (2004) Protein tyrosine phosphatases in the human genome. Cell 117, 699–711.

    Article  PubMed  CAS  Google Scholar 

  3. MacKeigan, J.P., Murphy, L.O., and Blenis, J. (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell Biol. 7, 591–600.

    Article  PubMed  CAS  Google Scholar 

  4. Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov M. (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol. 129, 908–925.

    Article  PubMed  CAS  Google Scholar 

  5. Monroe-Augustus, M., Zolman, B. K., and Bartel, B. (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15, 2979–2991.

    Article  PubMed  CAS  Google Scholar 

  6. Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., and Chory, J. (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448–460.

    Article  PubMed  CAS  Google Scholar 

  7. Schweighofer, A., Hirt, H., and Meskiene I. (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9, 236–243.

    Article  PubMed  CAS  Google Scholar 

  8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  9. Mount, D.W. (2004) Bioinformatics: Sequence and Genome Analysis, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 163–226.

    Google Scholar 

  10. Gribskov, M. and Veretnik, S. (1996) Identification of sequence patterns with profile analysis. Methods Enzymol. 266, 198–211.

    Article  PubMed  CAS  Google Scholar 

  11. Eddy, S.R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    Article  PubMed  CAS  Google Scholar 

  12. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  13. D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis (1996) Phylogenetic inference, in Molecular Systematics, 2nd ed. (Hillis, D. M., Moritz, C., and Mable, B. K., eds.), Sinauer Associates, Sunderland, MA, pp. 407–514.

    Google Scholar 

  14. Felsenstein, J. (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–426.

    Article  PubMed  CAS  Google Scholar 

  15. Luan, S. (2003) Protein phosphatases in plants. Annu. Rev. Plant Biol. 54, 63–92.

    Article  PubMed  CAS  Google Scholar 

  16. Bateman, A., Coin, L., Durbin, R., et al. (2004) The Pfam protein families database. Nucleic Acids Res. 32, D138–D141.

    Article  PubMed  CAS  Google Scholar 

  17. Bernal, A., Ear, U., and Kyrpides, N. (2001) Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nuc. Acids Res. 29, 126–127.

    Article  CAS  Google Scholar 

  18. Rhee, S. Y., Beavis, W., Berardini, T. Z., et al. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31, 224–228.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple-sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  20. Edgar, R. C. (2004) MUSCLE: multiple-sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  21. Poirot, O., Suhre, K., Abergel, C., O’Toole, E., and Notredame, C. (2004) 3DCoffee: a web server for mixing Sequences and Structures into multiple-sequence alignments. Nuc. Acids Res. 32, W37–W40.

    Article  CAS  Google Scholar 

  22. Nicholas, K.B., Nicholas, H.B. Jr., and Deerfield, D.W. II. (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4, 14.

    Google Scholar 

  23. Schmidt, H.A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.

    Article  PubMed  CAS  Google Scholar 

  24. Page, R.D.M. (1996) TreeView: An application to display phylogenetic trees on personal computers. Computer Applic. Biol. Sci. 12, 357–358.

    CAS  Google Scholar 

  25. Do, C.B., Mahabhashyam, M.S., Brudno, M., and Batzoglou, S. (2005) ProbCons: probabilistic consistency-based multiple-sequence alignment. Genome Res. 15, 330–340.

    Article  PubMed  CAS  Google Scholar 

  26. Shi, L., Potts, M., and Kennelly, P.J. (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229–253.

    Article  PubMed  CAS  Google Scholar 

  27. Yu, L.P., Miller, A.K., and Clark, S.E. (2003) POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr. Biol. 13, 179–188.

    Article  PubMed  CAS  Google Scholar 

  28. Bork, P., Brown, N.P., Hegri, H., and Schultz, J. (1996) The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Prot. Sci. 5, 1421–1425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kerk, D. (2007). Genome-Scale Discovery and Characterization of Class-Specific Protein Sequences. In: Moorhead, G. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology, vol 365. Springer, Totowa, NJ. https://doi.org/10.1385/1-59745-267-X:347

Download citation

  • DOI: https://doi.org/10.1385/1-59745-267-X:347

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-711-2

  • Online ISBN: 978-1-59745-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics