Skip to main content

The Use of RNA Interference to Analyze Protein Phosphatase Function in Mammalian Cells

  • Protocol
Book cover Protein Phosphatase Protocols

Abstract

The use of RNA interference to knock down protein phosphatases has proven to be a valuable approach to understanding the functions of these enzymes in mammalian cells. Many protein phosphatases exist as multisubunit and multigene families, which has made it difficult to assess their physiological functions using traditional approaches. The ability to selectively knock down specific subunits and individual isoforms with RNA interference has begun to make it possible to determine the contributions of individual phosphatase proteins to cellular signaling. This chapter describes methods for knocking down protein phosphatases with small interfering RNAs in easily transfectable cells and by the introduction of short-hairpin RNAs into less tractable cells using lentivirus vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378.

    Article  PubMed  CAS  Google Scholar 

  2. Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded. RNA Nature 431, 343–349.

    CAS  Google Scholar 

  3. MacKintosh, C. and MacKintosh, R. W. (1994) Inhibitors of protein kinases and phosphatases. Trends Biochem. Sci. 19, 444–448.

    Article  PubMed  CAS  Google Scholar 

  4. Janssens, V. and Goris, J. (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439.

    Article  PubMed  CAS  Google Scholar 

  5. Silverstein, A. M., Davis, A. J., Bielinski, V. A., Esplin, E. D., Mahmood, N. A., and Mumby, M. C. (2003) Protein phosphtase 2A, in Handbook of Cellular Signaling. Volume 2. (Bradshaw, R. A. and Dennis, E. A., eds.), Academic, New York.

    Google Scholar 

  6. Li, X., Scuderi, A., Letsou, A., and Virshup, D. M. (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol. Cell. Biol. 22, 3674–3684.

    Article  PubMed  CAS  Google Scholar 

  7. Silverstein, A. M., Barrow, C. A., Davis, A. J., and Mumby, M. C. (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc. Natl. Acad. Sci. USA 99, 4221–4226.

    Article  PubMed  CAS  Google Scholar 

  8. Mackeigan, J. P., Murphy, L. O., and Blenis, J. (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nature Cell Biol. 7, 591–600.

    Article  PubMed  CAS  Google Scholar 

  9. Strack, S., Cribbs, J. T., and Gomez, L. (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J. Biol. Chem. 279, 47,732–47,739.

    Article  PubMed  CAS  Google Scholar 

  10. Vuocolo, S., Purev, E., Zhang, D., et al. (2003) Protein Phosphatase 2A Associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells. J. Biol. Chem. 278, 41881–41889.

    Article  PubMed  CAS  Google Scholar 

  11. Yang, J., Wu, J., Tan, C., and Klein, P. S. (2003) PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 130, 5569–5578.

    Article  PubMed  CAS  Google Scholar 

  12. Sathyanarayanan, S., Zheng, X., Xiao, R., and Sehgal, A. (2004) Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 603–615.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, J., St-Germain, J. R., and Li, Q. (2005) B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Mol. Cell. Biol. 25, 525–532.

    Article  PubMed  Google Scholar 

  14. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136.

    Article  PubMed  CAS  Google Scholar 

  15. Neel, B. G., Gu, H., and Pao, L. (2003) The “Shp”ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293.

    Article  PubMed  CAS  Google Scholar 

  16. Saxton, T. M., Henkemeyer, M., Gasca, S., et al. (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, S. Q., Yang, W., Kontaridis, M. I., et al. (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355.

    Article  PubMed  Google Scholar 

  18. Rusanescu, G., Yang, W., Bai, A., Neel, B. G., and Feig, L. A. (2005) Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO J. 24, 305–314.

    Article  PubMed  CAS  Google Scholar 

  19. Madhavan, R., Zhao, X. T., Ruegg, M. A., and Peng, H. B. (2005) Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Mol. Cell Neurosci. 28, 403–416.

    Article  PubMed  CAS  Google Scholar 

  20. Salmon, P., Kindler, V., Ducrey, O., Chapuis, B., Zubler, R. H., and Trono, D. (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96, 3392–3398.

    PubMed  CAS  Google Scholar 

  21. Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S.-I., Craft, C., and Mumby, M. C. (1994) Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J. Biol. Chem. 269, 20139–20148.

    PubMed  CAS  Google Scholar 

  22. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  23. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  24. Boese, Q., Leake, D., Reynolds, A., et al. (2005) Mechanistic insights aid computational short interfering RNA design. Methods Enzymol. 392, 73–96.

    Article  PubMed  CAS  Google Scholar 

  25. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.

    Article  PubMed  CAS  Google Scholar 

  26. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  27. Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  PubMed  CAS  Google Scholar 

  28. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.

    Article  PubMed  CAS  Google Scholar 

  29. Paddison, P. J., Silva, J. M., Conklin, D. S., et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Fraser, I. et al. (2007). The Use of RNA Interference to Analyze Protein Phosphatase Function in Mammalian Cells. In: Moorhead, G. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology, vol 365. Springer, Totowa, NJ. https://doi.org/10.1385/1-59745-267-X:261

Download citation

  • DOI: https://doi.org/10.1385/1-59745-267-X:261

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-711-2

  • Online ISBN: 978-1-59745-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics