Skip to main content

Small-Molecule Inhibitors of Ser/Thr Protein Phosphatases

Specificity, Use and Common Forms of Abuse

  • Protocol
Protein Phosphatase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 365))

Abstract

Natural product extracts have proven to be a rich source of small molecules that potently inhibit the catalytic activity of certain PPP-family ser/thr protein phosphatases. To date, the list of inhibitors includes okadaic acid (produced by marine dinoflagelates, Prorocentrum sp. and Dinophysis sp.), calyculin A, dragmacidins (isolated from marine sponges), microcystins, nodularins (cyanobacteria, Microcystis sp. and Nodularia sp.), tautomycin, tautomycetin, cytostatins, phospholine, leustroducsins, phoslactomycins, fostriecin (soil bacteria, Streptomyces sp.), and cantharidin (blister beetles, approx 1500 species). Many of these compounds share structural similarities, and several have become readily available for research purposes. Here we will review the specificity of available inhibitors and present methods for their use in studying sensitive phosphatases. Common mistakes in the employment of these compounds will also be addressed briefly, notably the widespread misconception that they only inhibit the activity of PP1 and PP2A. Inhibitors of PP2B (calcineurin) will only be mentioned in passing, except to state that, in our hands, cypermethrin, deltamethrin, and fenvalerate, which are sold as potent inhibitors of PP2B, do not inhibit the catalytic activity of PP2B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bialojan, C. and Takai, A. (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 256, 283–290.

    PubMed  CAS  Google Scholar 

  2. Honkanen, R. E. and Golden, T. (2002) Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr. Med. Chem. 9, 2055–2075.

    PubMed  CAS  Google Scholar 

  3. Sakoff J. A. and McCluskey, A. (2004) Protein phosphatase inhibition: structure based design. Towards new therapeutic agents. Curr. Pharm. Des. 10, 1139–1159.

    Article  PubMed  CAS  Google Scholar 

  4. Buck, S. B., Hardouin, C., Ichikawa, S., et al. (2003) Fundamental role of the fostriecin unsaturated lactone and implications for selective protein phosphatase inhibition. J. Am. Chem. Soc. 125, 15,694–15,695.

    Article  PubMed  CAS  Google Scholar 

  5. Lewy, D. S., Gauss, C. M., Soenen D. R., and Boger, D. L. (2002) Fostriecin: chemistry and biology. Curr. Med. Chem. 9, 2005–2032.

    PubMed  CAS  Google Scholar 

  6. Ichinose, M., Endo, S., Critz, S. D., Shenolikar, S., and Byrne, J. H. (1990) Microcystin-LR, a potent protein phosphatase inhibitor, prolongs the serotoninand cAMP-induced currents in sensory neurons of Aplysia californica. Brain Res. 533, 137–140.

    Article  PubMed  CAS  Google Scholar 

  7. Fry, D. W., Besserer, J. A., and Boritzki, T. J. (1984) Transport of the antitumor antibiotic Cl-920 into L1210 leukemia cells by the reduced folate carrier system. Cancer Res. 44, 3366–3370.

    PubMed  CAS  Google Scholar 

  8. Favre, B., Turowski P., and Hemmings, B. A. (1997) Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J. Biol. Chem. 272, 13,856–13,863.

    Article  PubMed  CAS  Google Scholar 

  9. Golden, T. A. and Honkanen, R. E. (2003) Regulating the expression of protein phosphatase type 5. Methods Enzymol. 366, 372–930.

    Article  PubMed  CAS  Google Scholar 

  10. Killilea, S. D., Mellgren, R. L., Aylward, J. H., and Lee, E. Y. (1978) Inhibition of phosphorylase phosphatase by polyamines. Biochem. Biophys. Res. Commun. 81, 1040–1046.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Swingle, M., Ni, L., Honkanen, R.E. (2007). Small-Molecule Inhibitors of Ser/Thr Protein Phosphatases. In: Moorhead, G. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology, vol 365. Springer, Totowa, NJ. https://doi.org/10.1385/1-59745-267-X:23

Download citation

  • DOI: https://doi.org/10.1385/1-59745-267-X:23

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-711-2

  • Online ISBN: 978-1-59745-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics