Advertisement

The Use of RNA Interference to Analyze Protein Phosphatase Function in Mammalian Cells

  • Iain Fraser
  • Wei Liu
  • Robert Rebres
  • Tamara Roach
  • Joelle Zavzavadjian
  • Leah Santat
  • Jamie Liu
  • Estelle Wall
  • Marc Mumby
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 365)

Abstract

The use of RNA interference to knock down protein phosphatases has proven to be a valuable approach to understanding the functions of these enzymes in mammalian cells. Many protein phosphatases exist as multisubunit and multigene families, which has made it difficult to assess their physiological functions using traditional approaches. The ability to selectively knock down specific subunits and individual isoforms with RNA interference has begun to make it possible to determine the contributions of individual phosphatase proteins to cellular signaling. This chapter describes methods for knocking down protein phosphatases with small interfering RNAs in easily transfectable cells and by the introduction of short-hairpin RNAs into less tractable cells using lentivirus vectors.

Key Words

Protein serine/threonine phosphatase protein tyrosine phosphatase protein phosphatase 2A PP2A SH2-containing protein tyrosine phosphatase 2 Shp2 RNA interference small interfering RNA short hairpin RNA lentivirus transfection transduction physiological function 

References

  1. 1.
    Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378.PubMedCrossRefGoogle Scholar
  2. 2.
    Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded. RNA Nature 431, 343–349.Google Scholar
  3. 3.
    MacKintosh, C. and MacKintosh, R. W. (1994) Inhibitors of protein kinases and phosphatases. Trends Biochem. Sci. 19, 444–448.PubMedCrossRefGoogle Scholar
  4. 4.
    Janssens, V. and Goris, J. (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439.PubMedCrossRefGoogle Scholar
  5. 5.
    Silverstein, A. M., Davis, A. J., Bielinski, V. A., Esplin, E. D., Mahmood, N. A., and Mumby, M. C. (2003) Protein phosphtase 2A, in Handbook of Cellular Signaling. Volume 2. (Bradshaw, R. A. and Dennis, E. A., eds.), Academic, New York.Google Scholar
  6. 6.
    Li, X., Scuderi, A., Letsou, A., and Virshup, D. M. (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol. Cell. Biol. 22, 3674–3684.PubMedCrossRefGoogle Scholar
  7. 7.
    Silverstein, A. M., Barrow, C. A., Davis, A. J., and Mumby, M. C. (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc. Natl. Acad. Sci. USA 99, 4221–4226.PubMedCrossRefGoogle Scholar
  8. 8.
    Mackeigan, J. P., Murphy, L. O., and Blenis, J. (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nature Cell Biol. 7, 591–600.PubMedCrossRefGoogle Scholar
  9. 9.
    Strack, S., Cribbs, J. T., and Gomez, L. (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J. Biol. Chem. 279, 47,732–47,739.PubMedCrossRefGoogle Scholar
  10. 10.
    Vuocolo, S., Purev, E., Zhang, D., et al. (2003) Protein Phosphatase 2A Associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells. J. Biol. Chem. 278, 41881–41889.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang, J., Wu, J., Tan, C., and Klein, P. S. (2003) PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 130, 5569–5578.PubMedCrossRefGoogle Scholar
  12. 12.
    Sathyanarayanan, S., Zheng, X., Xiao, R., and Sehgal, A. (2004) Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 603–615.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, J., St-Germain, J. R., and Li, Q. (2005) B56 regulatory subunit of protein phosphatase 2A mediates valproic acid-induced p300 degradation. Mol. Cell. Biol. 25, 525–532.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136.PubMedCrossRefGoogle Scholar
  15. 15.
    Neel, B. G., Gu, H., and Pao, L. (2003) The “Shp”ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293.PubMedCrossRefGoogle Scholar
  16. 16.
    Saxton, T. M., Henkemeyer, M., Gasca, S., et al. (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang, S. Q., Yang, W., Kontaridis, M. I., et al. (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355.PubMedCrossRefGoogle Scholar
  18. 18.
    Rusanescu, G., Yang, W., Bai, A., Neel, B. G., and Feig, L. A. (2005) Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO J. 24, 305–314.PubMedCrossRefGoogle Scholar
  19. 19.
    Madhavan, R., Zhao, X. T., Ruegg, M. A., and Peng, H. B. (2005) Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Mol. Cell Neurosci. 28, 403–416.PubMedCrossRefGoogle Scholar
  20. 20.
    Salmon, P., Kindler, V., Ducrey, O., Chapuis, B., Zubler, R. H., and Trono, D. (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96, 3392–3398.PubMedGoogle Scholar
  21. 21.
    Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S.-I., Craft, C., and Mumby, M. C. (1994) Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J. Biol. Chem. 269, 20139–20148.PubMedGoogle Scholar
  22. 22.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.PubMedCrossRefGoogle Scholar
  24. 24.
    Boese, Q., Leake, D., Reynolds, A., et al. (2005) Mechanistic insights aid computational short interfering RNA design. Methods Enzymol. 392, 73–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.PubMedCrossRefGoogle Scholar
  26. 26.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  27. 27.
    Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.PubMedCrossRefGoogle Scholar
  28. 28.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958.PubMedCrossRefGoogle Scholar
  29. 29.
    Paddison, P. J., Silva, J. M., Conklin, D. S., et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Iain Fraser
    • 1
  • Wei Liu
    • 2
  • Robert Rebres
    • 3
  • Tamara Roach
    • 3
  • Joelle Zavzavadjian
    • 1
  • Leah Santat
    • 1
  • Jamie Liu
    • 1
  • Estelle Wall
    • 1
  • Marc Mumby
    • 2
  1. 1.AfCS Molecular Biology Laboratory, Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.AfCS Macrophage Biology, Northern California Institute for Research and EducationSan Francisco Veterans Administration HospitalSan FranciscoUSA

Personalised recommendations