Skip to main content

Determination of Reaction Intermediate Structures in Heme Proteins

  • Protocol
Macromolecular Crystallography Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 364))

  • 1480 Accesses

Abstract

Developments in structural biology and molecular biology have allowed increasingly detailed investigations of structure-function relationships. Although atomic-resolution structures of proteins are becoming more common, a growing number of structural studies have focused on the role played by dynamics and have sought to determine the structure of intermediates in protein reactions. These experiments have revealed the first atomic-level pictures of enzyme catalysis and the conformational motions required for biological function. This chapter uses the cryotrapping of reaction intermediates in horse heart myoglobin (Mb) to illustrate the methods utilized in determining the structures of reaction intermediates in protein systems. The techniques described here are applicable to a wide variety of heme proteins including Mb, hemoglobin, photosynthetic reaction centers, and cytochrome p450cam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoddard, B. L. (1998) New results using Laue diffraction and time-resolved crystallography. Curr. Opin. Struct. Biol. 8, 612–618.

    Article  PubMed  CAS  Google Scholar 

  2. Ridder, I. S., Rozeboom, H. J., Kalk, K. H., and Dijkstra, B. W. (1999) Crystal structures of intermediates in the dehalogenation of haloalkanoates by L-2-haloacid dehalogenase. J. Biol. Chem. 274, 30,672–30,678.

    Article  PubMed  CAS  Google Scholar 

  3. Pannifer, A. D., Flint, A. J., Tonks, N. K., and Barford, D. (1998) Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. 273, 10,454–10,462.

    Article  PubMed  CAS  Google Scholar 

  4. Burzlaff, N. I., Rutledge, P. J., Clifton, I. J., et al. (1999) The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724.

    Article  PubMed  CAS  Google Scholar 

  5. Ogle, J. M., Clifton, I. J., Rutledge, P. J., et al. (2001) Alternative oxidation by isopenicillin N synthase observed by X-ray diffraction. Chem. Biol. 8, 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  6. Wilmot, C. M., Hajdu, J., McPherson, M. J., Knowles, P. F., and Phillips, S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728.

    Article  PubMed  CAS  Google Scholar 

  7. Murray, J. B., Szoke, H., Szoke, A., and Scott, W. G. (2000) Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol. Cell. 5, 279–287.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhlbrandt, W. (2000) Bacteriorhodopsin—the movie. Nature 406, 569–570.

    Article  PubMed  CAS  Google Scholar 

  9. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–261.

    Article  PubMed  CAS  Google Scholar 

  10. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J. Mol. Biol. 291, 899–911.

    Article  PubMed  CAS  Google Scholar 

  11. Edman, K., Nollert, P., Royant, A., et al. (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.

    Article  PubMed  CAS  Google Scholar 

  12. Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648.

    Article  PubMed  CAS  Google Scholar 

  13. Sass, H. J., Buldt, G., Gessenich, R., et al. (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653.

    Article  PubMed  CAS  Google Scholar 

  14. Chu, K., Vojtchovsky, J., McMahon, B. H., Sweet, R. M., Berendzen, J., and Schlichting, I. (2000) Structure of a new ligand-binding intermediate in wildtype carbonmonoxymyoglobin. Nature 403, 921–923.

    Article  PubMed  CAS  Google Scholar 

  15. Schlichting, I., Berendzen, J., Phillips, G. N., Jr., and Sweet, R. M. (1994) Crystal structure of photolyzed myoglobin. Nature 371, 808–812.

    Article  PubMed  CAS  Google Scholar 

  16. Ostermann, A., Waschipky, R., Parak, F. G., and Nienhaus, G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.

    Article  PubMed  CAS  Google Scholar 

  17. Teng, T. Y., Srajer, V., and Moffat, K. (1994) Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40K. Nat. Struct. Biol. 1, 701–705.

    Article  PubMed  CAS  Google Scholar 

  18. Adachi, S., Park, S. Y., Tame, J. R., Shiro, Y., and Shibayama, N. (2003) Direct observation of photolysis-induced tertiary structural changes in hemoglobin. Proc. Natl. Acad. Sci. USA 100, 7039–7044.

    Article  PubMed  CAS  Google Scholar 

  19. Stowell, M. H., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816.

    Article  PubMed  CAS  Google Scholar 

  20. Schlichting, I., Berendzen, J., Chu, K., et al. (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  21. Stoddard, B. L. (1999) Visualizing enzyme intermediates using fast diffraction and reaction trapping methods: isocitrate dehydrogenase. Biochem. Soc. Trans. 27, 42–48.

    PubMed  CAS  Google Scholar 

  22. Scott, W.G. (1999) Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme. Q. Rev. Biophys. 32, 241–284.

    Article  PubMed  CAS  Google Scholar 

  23. Genick, U. K., Borgstahl, G. E., Ng, K., et al. (1997) Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  24. Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L., and Getzoff, E. D. (1998) Structure at 0.85 A resolution of an early protein photocycle intermediate. Nature 392, 206–209.

    Article  PubMed  CAS  Google Scholar 

  25. Perman, B., Srajer, V., Ren, Z., et al. (1998) Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279, 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  26. Subramaniam, S. and R. Henderson (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657.

    Article  PubMed  CAS  Google Scholar 

  27. Vonck, J. (2000) Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography. Embo. J. 19, 2152–2160.

    Article  PubMed  CAS  Google Scholar 

  28. Brunori, M., Vallone, B., Cutruzzola, F., et al. (2000) The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc. Natl. Acad. Sci. USA 97, 2058–2063.

    Article  PubMed  CAS  Google Scholar 

  29. Sjogren, T. and Hajdu, J. (2001) Structure of the bound dioxygen species in the cytochrome oxidase reaction of cytochrome cd1 nitrite reductase. J. Biol. Chem. 276, 13,072–13,076.

    Article  PubMed  CAS  Google Scholar 

  30. Arndt, J. W., Gong, W., Zhong, X., et al. (2001) Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. Biochemistry 40, 5368–5375.

    Article  PubMed  CAS  Google Scholar 

  31. Wilmouth, R. C., Edman, K., Neutze, R., et al. (2001) X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat. Struct. Biol. 8, 689–694.

    Article  PubMed  CAS  Google Scholar 

  32. Kern, D., Volkman, B. F., Luginbuhl, P., Nohaile, M. J., Kustu, S., and Wemmer, D. E. (1999) Structure of a transiently phosphorylated switch in bacterial signal transduction. Nature 402, 894–898.

    Article  PubMed  CAS  Google Scholar 

  33. Hadfield, A. and Hajdu, J. (1994) On the photochemical release of phosphate from 3,5-dinitrophenyl phosphate in a protein crystal. J. Mol. Biol. 236, 995–1000.

    Article  PubMed  CAS  Google Scholar 

  34. Urayama, P., Phillips, G. N., and Gruner, S. M. (2002) Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure 10, 51–60.

    Article  PubMed  CAS  Google Scholar 

  35. Vojtechovsky, J., Chu, K., Berendzen, J., Sweet, R. M., and Schlichting, I. (1999) Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174.

    Article  PubMed  CAS  Google Scholar 

  36. Schlichting, I. and Chu, K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  PubMed  CAS  Google Scholar 

  37. Wilmot, C. M. and Pearson, A. R. (2002) Cryocrystallography of metalloprotein reaction intermediates. Curr. Opin. Chem. Biol. 6, 202–207.

    Article  PubMed  CAS  Google Scholar 

  38. Schlichting, I. and Goody, R. S. (1997) Triggering Methods in crystallographic enzyme kinetics. Meth. Enzymol. 277, 467–490.

    Article  PubMed  CAS  Google Scholar 

  39. Lim, M., Jackson, T. A., and Anfinrud, P. A. (1997) Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 4, 209–214.

    Article  PubMed  CAS  Google Scholar 

  40. Chu, K., Ernst, R.M., Frauenfelder, H., Mourant, J. R., Nienhaus, G. U., and Philipp, R. (1995) Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610.

    Article  PubMed  CAS  Google Scholar 

  41. Berendzen, J. and Braunstein, D. (1990) Temperature-derivative spectroscopy: a tool for protein dynamics. Proc. Natl. Acad. Sci. USA 87, 1–5.

    Article  PubMed  CAS  Google Scholar 

  42. Petsko, G. A. and Ringe, D. (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem. Biol. 4, 89–94.

    Article  PubMed  CAS  Google Scholar 

  43. Schlichting, I. (2000) Crystallographic structure determination of unstable species. Acc. Chem. Res. 33, 532–538.

    Article  PubMed  CAS  Google Scholar 

  44. Ursby, T., Weik, M., Fioravanti, E., Delarue, M., Goeldner, M., and Bourgeois, D. (2002) Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals. Acta Crystallogr. D. Biol. Crystallogr. 58, 607–614.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Chu, K. (2007). Determination of Reaction Intermediate Structures in Heme Proteins. In: Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology™, vol 364. Humana Press. https://doi.org/10.1385/1-59745-266-1:19

Download citation

  • DOI: https://doi.org/10.1385/1-59745-266-1:19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-902-4

  • Online ISBN: 978-1-59745-266-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics