Skip to main content

The Same But Different

Isomorphous Methods for Phasing and High-Throughput Ligand Screening

  • Protocol
Macromolecular Crystallography Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 364))

  • 1528 Accesses

Abstract

Isomorphous difference methods allow rapid and detailed visualization of localized changes in macromolecular structures, whether as a result of mutation or the binding of ligands. Practical aspects of isomorphous methods and differential crystallography are presented, particularly in their application to the phasing of new structures by multiple isomorphous replacement and the detection and characterization of ligand binding. Techniques for maintaining isomorphism between crystals to maximize the differential signal are covered, as are the computational steps involved in generating difference electron density maps. Frontier applications such as determining single-site ligand-binding affinities crystallographically, high-throughput screening of combinatorial compound libraries, in crystallo competition assays, and inferring protein function via exogenous ligand-binding screens are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blundel, T. L. and Johnson, L. N. (1976) Protein Crystallography. Academic Press, New York, NY.

    Google Scholar 

  2. Petsko, G. A. (1985) Preparation of isomorphous heavy-atom derivatives. Methods Enzymol, 114, 147–156.

    Article  PubMed  CAS  Google Scholar 

  3. Rould, M. A. (1997) Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol. 276, 461–472.

    Article  CAS  Google Scholar 

  4. Islam, S. A., Carvin, D., Sternberg, M. J. E., and Blundell, T. L. (1998) MAD, a data bank of heavy-atom binding sites in protein crystals: a resource for use in multiple isomorphous replacement and anomalous scattering. Acta Cryst. D54, 1199–1206.

    CAS  Google Scholar 

  5. Garman, E. and Murray, J. W. (2003) Heavy-atom derivatization. Acta Crystallogr. D Biol. Crystallogr. 59, 1903–1913.

    Article  PubMed  Google Scholar 

  6. Dauter, Z., Dauter, M., and Rajashankar, K. R. (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr, 56, 232–237.

    Article  PubMed  CAS  Google Scholar 

  7. Evans, G. and Bricogne, G. (2002) Triiodide derivatization and combinatorial counter-ion replacement: two methods for enhancing phasing signal using laboratory Cu Kalpha X-ray equipment. Acta Crystallogr. D Biol. Crystallogr. 58, 976–991.

    Article  PubMed  Google Scholar 

  8. Sun, P. D., Radaev, S., and Kattah, M. (2002) Generating isomorphous heavy-atom derivatives by a quick-soak method. Part I: test cases. Acta Crystallogr. D Biol. Crystallogr. 58, 1092–1098.

    Article  PubMed  Google Scholar 

  9. Boggon, T. J. and Shapiro, L. (2000) Screening for phasing atoms in protein crystallography. Structure Fold. Des. 8, R143–R149.

    Article  PubMed  CAS  Google Scholar 

  10. Garman, E. F. and Grime, G. W. (2005) Elemental analysis of proteins by microPIXE. Prog. Biophys. Mol. Biol. 89, 173–205.

    Article  PubMed  CAS  Google Scholar 

  11. Rould, M. A. and Carter, C. W., Jr. (2003) Isomorphous difference methods. Methods Enzymol. 374, 145–163.

    Article  PubMed  CAS  Google Scholar 

  12. Collaborative_Computational_Project. (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst. D50, 760–763.

    Google Scholar 

  13. Brunger, A. T., Adams, P. D., Clore, G. M., et al. (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921.

    Article  PubMed  CAS  Google Scholar 

  14. Matthews, B. W. and Czerwinski, E. W. (1975) Local scaling: a method to reduce systematic errors in isomorphous and anomalous scattering measurements. Acta Cryst. A31, 480–487.

    CAS  Google Scholar 

  15. Blessing, R. H. (1997) LOCSCL: a program to statistically optimize local scaling of single-isomorphous-replacement and single-wavelength-anomalous-scattering data. J. Appl. Crystallogr. 30, 176–177.

    Article  CAS  Google Scholar 

  16. Freer, S. T. (1985) Classic (Fo-Fc) Fourier refinement. Methods Enzymol. 115, 235–237.

    Article  PubMed  CAS  Google Scholar 

  17. Terwilliger, T. C. and Berendzen, J. (1996) Bayesian difference refinement. Acta Cryst. D52, 1004–1011.

    CAS  Google Scholar 

  18. Terwilliger, T. C. (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37.

    Article  PubMed  CAS  Google Scholar 

  19. Brunger, A. T. (1997) Free R value: cross-validation in crystallography. Methods Enzymol. 277, 366–396.

    Article  PubMed  CAS  Google Scholar 

  20. Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., and Vieth, M. (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem. 47, 45–55.

    Article  PubMed  CAS  Google Scholar 

  21. Berman, H. M., Battistuz, T., Bhat, T. N., et al. (2002) The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 58, 899–907.

    Article  PubMed  Google Scholar 

  22. Zhou, Y. and MacKinnon, R. (2004) Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43, 4978–4982.

    Article  PubMed  CAS  Google Scholar 

  23. Shipps, G. W., Jr., Pryor, K. E., Xian, J., Skyler, D. A., Davidson, E. H., and Rebek, J., Jr. (1997) Synthesis and screening of small molecule libraries active in binding to DNA. Proc. Natl. Acad. Sci. USA 94, 11,833–11,838.

    Article  PubMed  CAS  Google Scholar 

  24. English, A. C., Done, S. H., Caves, L. S., Groom, C. R., and Hubbard, R. E. (1999) Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins 37, 628–640.

    Article  PubMed  CAS  Google Scholar 

  25. Mattos, C. and Ringe, D. (2001) Proteins in organic solvents. Curr. Opin. Struct. Biol. 11, 761–764.

    Article  PubMed  CAS  Google Scholar 

  26. Xing, Y. and Xu, W. (2003) Crystallization of the PX domain of cytokine-independent survival kinase (CISK): improvement of crystal quality for X-ray diffraction with sodium malonate. Acta Cryst. D59, 1816–1818.

    CAS  Google Scholar 

  27. Holyoak, T., Fenn, T. D., Wilson, M. A., Moulin, A. G., Ringe, D., and Petsko, G. A. (2003) Malonate: a versatile cryoprotectant and stabilizing solution for salt-grown macromolecular crystals. Acta Cryst. D59, 2356–2358.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Rould, M.A. (2007). The Same But Different. In: Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology™, vol 364. Humana Press. https://doi.org/10.1385/1-59745-266-1:159

Download citation

  • DOI: https://doi.org/10.1385/1-59745-266-1:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-902-4

  • Online ISBN: 978-1-59745-266-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics