Skip to main content

High Content Screening as a Screening Tool in Drug Discovery

  • Protocol
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 356))

Abstract

In most pharmaceutical and biotechnology companies there is a need to always improve the quality of lead candidates. This demand resulted in the use of cell-based screening as a method of choice in drug discovery (1,2). High content screening (HCS) is multiplexed, functional cell-based screening (36). HCS can be used in all aspects of drug discovery as an engine for driving lead discovery. The biological applications of HCS have been implemented in research in signaling, cell shape changes and toxicology. HCS has enabled an insight in the cellular effects of our clinical candidates in multiple cellular phenomena like dual reporter assay, subcellular target translocation and cellular morphology. Discovery of therapeutic protein and small molecule converge on diseases in therapeutic areas such neurological disorders and autoimmune diseases. HCS is used for assay development, primary, secondary screening and toxicology testing. In this chapter, the use of HCS assays in drug discovery is described and highlight the necessary step to set-up successfully these assays for screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gribbon, P. and Sewing, A. (2003) Fluorescence readouts in HTS: no gain without pain? Drug Discov. Today 8, 1035–1043.

    Article  CAS  Google Scholar 

  2. Johnston, P. A. and Johnston, P. A. (2002) Cellular platforms for HTS: three case studies. Drug Discov. Today 7, 353–363.

    Article  CAS  Google Scholar 

  3. Abraham, V. C., Taylor, D. L., and Haskins, J. R. (2004) High content screening applied to large scale cell biology. Trends Biotechnol. 22, 15–22.

    Article  CAS  Google Scholar 

  4. Alessi, D. R. and Downes, C. P. (1998). The role of PI 3-kinase in insulin action. Biochim. Biophys. Acta 1436, 151–164.

    CAS  Google Scholar 

  5. Giuliano, K. A., Haskins, J. R., and Taylor, D. L. (2003) Advances in high content screening for drug discovery. Assay. Drug Dev. Technol. 1, 565–577.

    Article  CAS  Google Scholar 

  6. Johnston, P. (2002) Cellular assays in HTS. Methods Mol. Biol. 190, 107–116.

    CAS  Google Scholar 

  7. Russello, S. V. (2004) Assessing cellular protein phosphorylation: high throughput drug discovery technologies. Assay. Drug Dev. Technol. 2, 225–235.

    Article  CAS  Google Scholar 

  8. Taylor, D. L., Woo, E. S., and Giuliano, K. A. (2001). Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr. Opin. Biotechnol. 12, 75–81.

    Article  CAS  Google Scholar 

  9. Vogt, A., Cooley, K. A., Brisson, M., Tarpley, M. G., Wipf, P., and Lazo, J. S. (2003) Cell-active dual specificity phosphatase inhibitors identified by high content screening. Chem. Biol. 10, 733–742.

    Article  CAS  Google Scholar 

  10. Ramm, P. and Thomas, N. (2003) Image-based screening of signal transduction assays. Sci. STKE. 2003, E14.

    Article  Google Scholar 

  11. Gaillard, P., Jeanclaude-Etter, I., Ardissone, V., et al. (2005) Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl)acetonitrile inhibitors of the c-jun N-terminal kinase. J. Med. Chem. 48, 4596–4607.

    Article  CAS  Google Scholar 

  12. Manning, A. M. and Davis, R. J. (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat. Rev. Drug Discov. 2, 554–565.

    Article  CAS  Google Scholar 

  13. Ruckle, T., Biamonte, M., Grippi-Vallotton, T., et al. (2004) Design, synthesis, and biological activity of novel, potent, and selective (benzoylaminomethyl)thiophene sulfonamide inhibitors of c-Jun-N-terminal kinase. J. Med. Chem. 47, 6921–6934.

    Article  Google Scholar 

  14. Lin, A., Minden, A., Martinetto, H., et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268, 286–290.

    Article  CAS  Google Scholar 

  15. Ding, G. J., Fischer, P. A., Boltz, R. C., et al. (1998) Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system. J. Biol. Chem. 273, 28,897–28,905.

    Article  CAS  Google Scholar 

  16. Vakkila, J., DeMarco, R. A., and Lotze, M. T. (2004) Imaging analysis of STAT1 and NF-kappaB translocation in dendritic cells at the single cell level. J. Immunol. Methods 294, 123–134.

    Article  CAS  Google Scholar 

  17. Karin, M., Yamamoto, Y., and Wang, Q. M. (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26.

    Article  CAS  Google Scholar 

  18. Mielke, K., Damm, A., Yang, D. D., and Herdegen, T. (2000) Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Brain Res. Mol. Brain Res. 75, 128–137.

    Article  CAS  Google Scholar 

  19. Buckman, T. D., Sutphin, M. S., and Mitrovic, B. (1993) Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J. Neurochem. 60, 2046–2058.

    Article  CAS  Google Scholar 

  20. Hurley, J. H. and Meyer, T. (2001). Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13, 146–152.

    Article  CAS  Google Scholar 

  21. Lundholt, B. K., Linde, V., Loechel, F., et al. (2005) Identification of Akt pathway inhibitors using redistribution screening on the FLIPR and the IN Cell 3000 analyzer. J. Biomol. Screen. 10, 20–29.

    Article  CAS  Google Scholar 

  22. Fields, R. D. and Nelson, P. G. (1992) Activity-dependent development of the vertebrate nervous system. Int. Rev. Neurobiol. 34, 133–214.

    Article  CAS  Google Scholar 

  23. Thoenen, H. (1991) The changing scene of neurotrophic factors. Trends Neurosci. 14, 165–170.

    Article  CAS  Google Scholar 

  24. Ramm, P., Alexandrov, Y., Cholewinski, A., Cybuch, Y., Nadon, R., and Soltys, B. J. (2003) Automated screening of neurite outgrowth. J. Biomol. Screen. 8, 7–18.

    Article  Google Scholar 

  25. Kirsch-Volders, M., Sofuni, T., Aardema, M., et al. (2003) Report from the in vitro micronucleus assay working group. Mutat. Res. 540, 153–163.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press, Inc.

About this protocol

Cite this protocol

Nichols, A. (2007). High Content Screening as a Screening Tool in Drug Discovery. In: Taylor, D.L., Haskins, J.R., Giuliano, K.A. (eds) High Content Screening. Methods in Molecular Biology, vol 356. Humana Press. https://doi.org/10.1385/1-59745-217-3:379

Download citation

  • DOI: https://doi.org/10.1385/1-59745-217-3:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-731-0

  • Online ISBN: 978-1-59745-217-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics