Skip to main content

Target Validation in Drug Discovery

  • Protocol
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 356))

  • 3054 Accesses

Abstract

The process of target validation identifies and assesses whether a molecular target merits the development of pharmaceuticals for therapeutic application. The most valuable application of high content screening to target validation is at the early stages of the process when genetic methods (including RNA interference—RNAi) are being applied to many potential targets. At this stage both throughput and indepth analysis are required. This process is illustrated using various examples from the area of oncology target validation. The Akt signal transduction pathway is used to illustrate an efficient way of identifying HCS compatible reagents for use in assay development. RNAi transfection methods are discussed. A description is given of an HCS assay that simultaneously measures two nodes of the Akt pathway: Akt substrate phosphorylation and RPS6 phosphorylation. Another example of an assay measuring proliferation (DNA synthesis) and apoptosis (Histone H2B phosphorylation) within the same cell population is used to illustrate the combination of typical phenotypic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehenni, H., Lin-Marq, N., Buchet-Poyau, K., et al. (2005) LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum. Mol. Genet. 14(15), 2209–2219.

    Article  CAS  Google Scholar 

  2. Jimenez, A. I., Fernandez, P., Dominguez, O., Dopazo, A., Sanchez-Cespedes, M. (2003) Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3′-phosphate kinase/PTEN pathway. Cancer Res. 63(6), 1382–1388.

    CAS  Google Scholar 

  3. Hermans, K. G., van Alewijk, D. C., Veltman, J. A., van Weerden, W., van Kessel, A. G., and Trapman, J. (2004) Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines. Genes Chromosomes Cancer 39(3), 171–184.

    Article  CAS  Google Scholar 

  4. Kovacina, K. S., Park, G. Y., Bae, S. S., et al. (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278(12), 10,189–10,194.

    Article  CAS  Google Scholar 

  5. Choe, G., Horvath, S., Cloughesy, T. F., et al. (2003) Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 63(11), 2742–2746.

    CAS  Google Scholar 

  6. Pende, M., Um, S. H., Mieulet, V., et al. (2004) S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 24(8), 3112–3124.

    Article  CAS  Google Scholar 

  7. Cheung, W. L., Ajiro, K., Samejima, K., et al. (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113(4), 507–517.

    Article  CAS  Google Scholar 

  8. Kato, M., Mochizuki, K., Kuroda, K., et al. (1991) Histone H2B as an antigen recognized by lung cancer-specific human monoclonal antibody HB4C5. Hum. Antibodies Hybridomas 2(2), 94–101.

    CAS  Google Scholar 

  9. Kim, H. S., Cho, J. H., Park, H. W., et al. (2002) Endotoxin-neutralizing antimicrobial proteins of the human placenta. J. Immunol. 168(5), 2356–2364.

    CAS  Google Scholar 

  10. Kunkel, M. T., Ni, Q., and Tsien, R. Y. (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J. Biol. Chem. 280(7), 5581–5587.

    Article  CAS  Google Scholar 

  11. van Hemert, M. J., Niemantsverdriet, M., Schmidt, T., Backendorf, C., and Spaink, H. P. (2004) Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 zeta. J. Cell Sci. 117(Pt 8), 1411–1420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press, Inc.

About this protocol

Cite this protocol

Blake, R.A. (2007). Target Validation in Drug Discovery. In: Taylor, D.L., Haskins, J.R., Giuliano, K.A. (eds) High Content Screening. Methods in Molecular Biology, vol 356. Humana Press. https://doi.org/10.1385/1-59745-217-3:367

Download citation

  • DOI: https://doi.org/10.1385/1-59745-217-3:367

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-731-0

  • Online ISBN: 978-1-59745-217-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics