Skip to main content

Past, Present, and Future of High Content Screening and the Field of Cellomics

  • Protocol
Book cover High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 356))

Abstract

High content screening (HCS) was created in 1996 to offer a new platform that could be used to permit relatively high-throughput screening of cells, in which each cell in an array would be analyzed at a subcellular resolution using multicolored, fluorescence-based reagents for both specificity and sensitivity. We developed HCS with the perspective of the history of the development of the automated DNA sequencers that revolutionized the field of genomics. Furthermore, HCS was based on a history of important developments in modern cytology. HCS integrates the instrumentation, application software, reagents, sample preparation, and informatics/bioinformatics required to rapidly flow from producing data, generating information, and ultimately creating new cellular knowledge. The HCS platform is beginning to have an important impact on early drug discovery, basic research in systems cell biology, and is expected to play a role in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giuliano, K. A., DeBiasio, R. L., Dunlay, R. T., et al. (1997) High content screening: a new approach to easing key bottlenecks in the drug discovery process. J. Biomol. Screen 2, 249–259.

    Article  CAS  Google Scholar 

  2. Taylor, D. L. and Giuliano, K. A. (2005) Multiplexed high content screening assays create a systems cell biology approach to drug discovery. Drug Discov. Today Technol. 2, 149–154.

    Article  CAS  Google Scholar 

  3. Mattick, J. S. (2003) Challenging the dogma: the hidden layer of non-protein-coding RNA’s in complex organisms. Bioassays 25, 930–939.

    Article  CAS  Google Scholar 

  4. Gibbs, W. W. (2003) The unseen genome: gems among the junk. Sci. Am. 289, 26–33.

    Google Scholar 

  5. Irish, J. M., Hovland, R., Krutzik, P. O., et al. (2004) Single cell profiling of potentiated phosphor-protein networks in cancer cells. Cell 118, 217–228.

    Article  CAS  Google Scholar 

  6. Poy, M. N., Eliasson, L., Krutzfeldt, J., et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  CAS  Google Scholar 

  7. Posner, B. A. (2005) High-throughput screening-driven lead discovery: meeting the challenges of finding new therapeutics. Current Opinion. Drug Discov. Dev. 8(4), 487–494.

    CAS  Google Scholar 

  8. Giuliano, K. A. (2003) High-content profiling of drug-drug interactions: cellular targets involved in the modulation of microtubule drug action by the antifungal ketoconazole. J. Biomol. Screen. 8, 125–135.

    Article  CAS  Google Scholar 

  9. Mitchison, T. J. (2005) Small-molecule screening and (profiling by using automated microscopy). Chem. Bio. Chem. 5, 1–7.

    Google Scholar 

  10. Hunkapiller, T., Kaiser, R. J., Koop, B. F., and Hood, L. (1991) Large-scale and automated DNA sequence determination. Science 254, 59–67.

    Article  CAS  Google Scholar 

  11. Hood, L. and Galas, D. (2003) The digital code of DNA. Nature 421, 444–448.

    Article  Google Scholar 

  12. Taylor, D. L., Waggoner, A. S., Murphy, R. F., Lanni, F., and Birge, R. R. (eds.) (1986) Applications of Fluorescence in the Biomedical Sciences. Alan R. Liss, New York.

    Google Scholar 

  13. Taylor, D. L., Nederlof, M., Lanni, F., and Waggoner, A. S. (1992) The new vision of light microscopy. Am. Scientist 80, 322–335.

    Google Scholar 

  14. Taylor, D. L. and Wang, Y.-L. (eds.) (1989) Fluorescence microscopy of living cells in culture. Parts A and B, in Methods in Cell Biology. Academic, New York, 29, 30.

    Google Scholar 

  15. Inoue, S. and Spring, K. R. (1997) Video Microscopy: The Fundamentals. Plenum Press, New York.

    Google Scholar 

  16. Pawley, J. B. (ed.) (1995) Handbook of Biological Confocal Microscopy. Plenum Press, New York.

    Google Scholar 

  17. Farkas, D. L., Baxter, G., DeBiasio, R. L., et al. (1993) Multimode light microscopy and the dynamics of molecules, cells and tissues. Annu. Rev. Physiol. 55, 785–817.

    CAS  Google Scholar 

  18. Denk, W., Strickler, J. H., and Webb, W. W. (1990) Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.

    Article  CAS  Google Scholar 

  19. Coons, A. H. and Kaplan, M. M. (1950) Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exper. Med. 91, 1–13.

    Article  CAS  Google Scholar 

  20. Minsky, M. (1988) Memoir on inventing the confocal scanning microsope. Scanning 10, 128–138.

    Google Scholar 

  21. Ploem, J. S., Tanke, H. J., Al, I., and Deedler, A. M. (1978) Immunofluorescence and Related Staining Techniques, (Knapp, W., Holubar, K., and Wick, G., eds.), Elsevier, Amsterdam.

    Google Scholar 

  22. Ploem, J. S. (1967) The use of a vertical illuminator with interchangeable dielectric mirrors for fluorescence microscopy with incident light. Z. Wiss. Mikrosk. 68, 129–142.

    CAS  Google Scholar 

  23. Shapiro, H. M. (2003) Practical Flow Cytometry, Fourth ed. Wiley-Liss, New York.

    Book  Google Scholar 

  24. Coulter, W. H. (1956) High speed automatic blood cell counter and cell size analyzer. Proc. Natl. Electronics Conf. 12, 1034.

    Google Scholar 

  25. Fulwyler, M. J. (1965) Electronic separation of biological cells by volume. Science 150, 910.

    Article  CAS  Google Scholar 

  26. Kamentsky, L. A. and Melamed, M. R. (1969) Instrumentation for automated examinations of cellular specimens. Proc. IEEE 57, 2007–2016.

    Article  Google Scholar 

  27. Reynolds, G. T. (1972) Image intensification applied to biological problems. Q. Rev. Biophys. 5, 295–347.

    Article  CAS  Google Scholar 

  28. Reynolds, G. T. and Taylor, D. L. (1980) Image intensification applied to light microscopy. Bioscience 30, 586–591.

    Article  Google Scholar 

  29. Ploem, J. S. (1993) Fluorescence microscopy, in Fluorescent and Luminescent Probes for Biological Activity, (Mason, W. T., ed.), Academic, London, pp. 1–11.

    Google Scholar 

  30. Chance, B. (1962) Kinetics of enzyme reactions within single cells. Ann. NY. Acad. Sci. 97, 431–448.

    Article  CAS  Google Scholar 

  31. Ingram, M. and Preston, K., Jr. (1964) Automatic analysis of blood cells. Scientific Amer. 223, 72.

    Article  Google Scholar 

  32. Castleman, K. R. (1979) Digital Image Processing. Prentice-Hall, New Jersey.

    Google Scholar 

  33. Prewitt, J. M. S. and Mendelson, M. L. (1966) The analysis of cell images. Ann. NY. Acad. Sci. 128, 1035.

    Article  CAS  Google Scholar 

  34. Waggoner, A. S. (1979) Dye indicators of membrane potential. Ann. Rev. Biophys. Bioeng. 8, 47–68.

    Article  CAS  Google Scholar 

  35. Haugland, R. (1993) Intracellular ion indicators, in Fluorescent and Luminescent Probes for Biological Activity (Mason, W. T., ed.), Academic, London, pp. 34–43.

    Google Scholar 

  36. Taylor, D. L. and Wang, Y.-L. (1978) Molecular cytochemistry: incorporation of fluorescently labeled actin into cells. Proc. Natl. Acad. Sci. USA 75, 857–861.

    Article  CAS  Google Scholar 

  37. Taylor, D. L. and Wang, Y.-L. (1980) Fluorescently labeled molecules as probes of the structure and function of living cells. Nature 284, 405–410.

    Article  CAS  Google Scholar 

  38. Wang, Y.-L., Heiple, J. M., and Taylor, D. L. (1982) Fluorescent analog cytochemistry of contractile proteins. Meth. Cell Biol. 25(B), 1–11.

    Article  Google Scholar 

  39. Allen, R. D. (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann. Rev. Biophys. Chem. 14, 265–290.

    Article  CAS  Google Scholar 

  40. Tanasugarn, L., McNeil, P., Reynolds, G., and Taylor, D. L. (1984) Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH. J. Cell Biol. 98, 717–724.

    Article  CAS  Google Scholar 

  41. Bright, G. R., Fisher, G. W., Rogowska, J., and Taylor, D. L. (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J. Cell Biol. 104, 1019–1033.

    Article  CAS  Google Scholar 

  42. Williams, D. A., Fogarty, K. E., Tsien, R. Y., and Fay, F. S. (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318, 558–561.

    Article  CAS  Google Scholar 

  43. Hahn, K. M., DeBiasio, R., and Taylor, D. L. (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359, 736–738.

    Article  CAS  Google Scholar 

  44. Gough, A. and Taylor, D. L. (1993) Fluorescence anisotropy imaging microscopy maps calmodulin binding during cellular contraction and locomotion. J. Cell Biol. 121, 1095–1107.

    Article  CAS  Google Scholar 

  45. Aikens, R. S., Agard, D. A., and Sedat, J. W. (1989) Solid-state imagers for microscopy, in Fluorescence Microscopy of Living Cells in Culture, (Taylor, D. L. and Wang, Y.-L., eds.), Academic, New York, pp. 291–313.

    Google Scholar 

  46. White, J. G., Amos, W. B., and Fordham, M. (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48.

    Article  CAS  Google Scholar 

  47. Waggoner, A. (1990) Fluorescent probes for cytometry, in Flow Cytometry and Sorting, (Melamed, M. R., Lindmo, T., and Mendelsohn, M. L., eds.), Wiley-Liss, Inc., New York, pp. 209–225.

    Google Scholar 

  48. DeBiasio, R., Bright, G. R., Ernst, L. A., Waggoner, A. S., and Taylor, D. L. (1987) Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells. J. Cell Biol. 105, 1613–1622.

    Article  CAS  Google Scholar 

  49. Giuliano, K. A., Post, P. L., Hahn, K. M., and Taylor, D. L. (1995) Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Ann Rev Biophys. Biomol. Struct. 24, 405–434.

    Article  CAS  Google Scholar 

  50. Giuliano, K. A. and Taylor, D. L. (1998) Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotech. 16, 135–140.

    Article  CAS  Google Scholar 

  51. Giuliano, K. A., Chen, Y.-T., and Haskins, J. R. (2003) Positional biosensors: a new tool for high content screening. Modern Drug Discov. (August), 33–37.

    Google Scholar 

  52. Tsien, R. Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927–932.

    Article  CAS  Google Scholar 

  53. Hahn, K. and Toutchkine, A. (2002) Live-cell fluorescent biosensors for activated signaling proteins. Curr. Opin. Cell Biol. 14, 167–172.

    Article  CAS  Google Scholar 

  54. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prascher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  Google Scholar 

  55. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178.

    Article  CAS  Google Scholar 

  56. Schroeder, K. S. and Neagle, B. D. (1996) FLIPR: a new instrument for accurate, high throughput optical sectioning. J. Biomol. Screen. 1, 75–80.

    Article  CAS  Google Scholar 

  57. Giuliano, K. A., Haskins, J. R., and Taylor, D. L. (2003) Advances in high content screening for drug discovery. ASSAY and Drug Dev. Tech. 1, 565–577.

    Article  CAS  Google Scholar 

  58. Giuliano, K. A., Chen, Y.-T., and Taylor, D. L. (2004) Highcontent screening with siRNA optimizes a cell biological approach to drug discovery: defining the role of p53 activation in the cellular response to anticancer drugs. J. Biomol. Screen. 9, 557–567.

    Article  CAS  Google Scholar 

  59. Giuliano, K. A., Cheung, W. S., Curran, D. P., et al. (2005) Systems cell biology knowledge created from high content screening. ASSAY and Drug Dev. Tech. 3, 501–514.

    Article  CAS  Google Scholar 

  60. Abraham, V. C., Taylor, D. L., and Haskins, J. R. (2003) High content screening applied to large-scale cell biology. Trends Biotech. 22, 15–22.

    Article  Google Scholar 

  61. Taylor, D. L., DeBiasio, R., LaRocca, G., et al. (1994) Potential of machine-vision light microscopy in toxicologic pathology. Toxicol. Pathol. 22, 145–159.

    Article  CAS  Google Scholar 

  62. Haskins, J. R., Rowse, P., Rahbari, R., and de la Iglesia, F. A. (2001) Thiazolidinedione toxicity to isolated hepaticytes revealed by coherent multiprobe fluorescence microscopy and correlated with multiparameter flow cytometry of peripheral leukocytes. Arch. Toxicol. 75, 425–438.

    Article  CAS  Google Scholar 

  63. Abraham, V. C., Samson, B., Lapets, O., and Haskins, J. R. (2004) Automated classification of individual cellular responses across multiple targets. Preclinica 2, 349–355.

    CAS  Google Scholar 

  64. Kolega, J. and Taylor, D. L. (1993) Gradients in the concentration and assembly of myosin II in living fibroblasts during locomotion and fiber transport. Mol. Biol. Cell 4, 819–836.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press, Inc.

About this protocol

Cite this protocol

Taylor, D.L. (2007). Past, Present, and Future of High Content Screening and the Field of Cellomics. In: Taylor, D.L., Haskins, J.R., Giuliano, K.A. (eds) High Content Screening. Methods in Molecular Biology, vol 356. Humana Press. https://doi.org/10.1385/1-59745-217-3:3

Download citation

  • DOI: https://doi.org/10.1385/1-59745-217-3:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-731-0

  • Online ISBN: 978-1-59745-217-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics