Skip to main content

Differentiating Primary Human Cells in Rapid-Throughput Discovery Applications

  • Protocol
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 356))

Abstract

Primary cultures of human cells provide an increasingly important alternative to using virally transformed or otherwise immortalized cell lines or to using cloned cell lines derived from human or animal tumors. Advances in primary cell culture techniques, media formulations, and other reagents have enabled routine culture of primary cells derived from human tissues for biomedical research and drug discovery approaches such as high content screening. That primary cells retain the phenotypic characteristics of the original tissue is one main advantage over immortalized cell lines. However, securing reliable supplies of primary cells on a large scale has been problematic. Here, two primary differentiating cell types, preadipocytes and preosteoclasts, are described to illustrate the utility of commercially produced cell systems in discovery research and rapid-throughput applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Urso, G. and Datta, S. (2001) Cell cycle control, checkpoints, and stem cell biology, in Stem Cell Biology, (Marshak, D. R., Gottlieb, D., and Gardner, R. eds.), The Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 61–94.

    Google Scholar 

  2. Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M. L., Stammati, A., and Zucco, F. (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 211, 1–26.

    Article  Google Scholar 

  3. Tang, Q. Q., Gronborg, M., Huang, H., et al. (2005) Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3 beta is required for adipogenesis. Proc. Natl Acad. Sci. USA 102, 9766–9771.

    Article  CAS  Google Scholar 

  4. Carpino, N., Wisniewski, D., Strife, A., et.al. (1997) p62dok: a constitutively tyrosine-phosphorylated GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88, 197–204.

    Article  CAS  Google Scholar 

  5. Hayflick, L. and Moorehead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.

    Article  Google Scholar 

  6. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636.

    Article  CAS  Google Scholar 

  7. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.

    Article  CAS  Google Scholar 

  8. Jaiswal, R. K., Jaiswal, N., Bruder, S., Mbalaviele, G., Marshak, D. R., and Pittenger, M. F. (2000) Regulation of osteogenic and adipogenic differentiation of human adult mesenchymal stem cells through phosphorylation of MAP kinase. J. Biol. Chem. 275, 9645–9652.

    Article  CAS  Google Scholar 

  9. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of mesenchymal stem cells. Science 284, 143–147.

    Article  CAS  Google Scholar 

  10. Pittenger, M. F. and Marshak, D. R. (2001) Mesenchymal stem cells. in Stem Cell Biology, (Marshak, D. R., Gottlieb, D. and Gardner, R., eds.), The Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 349–373.

    Google Scholar 

  11. Gregoire, F. M., Smas C. M., and Sul, H. S. (1998) Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809.

    CAS  Google Scholar 

  12. Wittrant, Y., Theoleyre, S., Couillaud, S., Dunstan, C., Heymann, D., and Redini, F. (2004) Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-κB ligand and osteoprotegerin biological activities. Exp. Cell Res. 293, 292–301.

    Article  CAS  Google Scholar 

  13. Mbalaviele, G., Abu-Amer, Y., Meng, A., et al. (2000) Activation of peroxisome proliferator-activated receptor-γ pathway induces osteoclast differentiation. J. Biol. Chem. 275, 14,388–14,393.

    Article  CAS  Google Scholar 

  14. Hauner, H., Skurk, T., and Wabitsch, M. (2001) Cultures of human adipose precursor cells. Methods Mol. Biol. 155, 239–247.

    CAS  Google Scholar 

  15. Flanagan, A. M. and Massey, H. M. (2003) Generating human osteoclasts in vitro from bone marrow and peripheral blood. Methods Mol. Med. 80, 113–128.

    Google Scholar 

  16. Nicholson, G. C., Malakellis, M., Collier, F. M., et al. (2000) Induction of osteoclasts from CD14-positive human peripheral blood mononuclear cells by receptor activator of nuclear factor kappaB ligand (RANKL). Clin. Sci. 99, 133–140.

    Article  CAS  Google Scholar 

  17. Novakofski, J. (2004) Adipogenesis: usefulness of in vitro and in vivo experimental models. J. Anim. Sci. 82, 905–915.

    CAS  Google Scholar 

  18. Lacey, D. L., Timms, E., Tan, H.-L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.

    Article  CAS  Google Scholar 

  19. Meghji, S., Morrison, M. S., Henderson, B., and Arnett, T. R. (2001) pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am. J. Physiol. Endocrinol. Metab. 280, E112–E119.

    CAS  Google Scholar 

  20. Greenspan, P., Mayer, E. P., and Fowle, S. D. (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973.

    Article  CAS  Google Scholar 

  21. Nesbitt, S., Nesbit, A., Helfrich, M., and Horton, M. (1993) Biochemical characterization of human osteoclast integrins. Osteoclasts express alphaVbeta3, alpha2beta1, and alphaVbeta1 integrins. J. Biol. Chem. 268, 16,737–16,745.

    CAS  Google Scholar 

  22. Janckila, A. J., Li, C. Y., Lam, K. W., and Yam, L. T. (1978) The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations. Am. J. Clin. Pathol. 70, 45–55.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press, Inc.

About this protocol

Cite this protocol

Marshak, D.R., Greenwalt, D.E. (2007). Differentiating Primary Human Cells in Rapid-Throughput Discovery Applications. In: Taylor, D.L., Haskins, J.R., Giuliano, K.A. (eds) High Content Screening. Methods in Molecular Biology, vol 356. Humana Press. https://doi.org/10.1385/1-59745-217-3:121

Download citation

  • DOI: https://doi.org/10.1385/1-59745-217-3:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-731-0

  • Online ISBN: 978-1-59745-217-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics