Advertisement

Characteristics and Value of Machine Learning for Imaging in High Content Screening

  • Juergen A. Klenk
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 356)

Abstract

Requirements for a flexible image analysis package for high content screening (HCS) are discussed. An overview of tools and techniques for image analysis and machine learning is given. Machine learning for classification and segmentation, the two fundamental elements of image analysis, is discussed. Next generation image analysis packages for HCS are reviewed. Recommendations for the development of image analysis solutions for advanced assays are given.

Key Words

Classification computer vision high content screening (HCS) image analysis machine learning morphology operations neural networks segmentation semantic networks thresholding training 

References

  1. 1.
    Gonzalez, R. C. and Woods, R. E. (eds.) (2003) Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  2. 2.
    Gonzalez, R. C., Eddins, S. L., and Woods, R. E. (eds.) (2003) Digital Image Processing Using MATLAB, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  3. 3.
    Parker, J. R. (ed.) (1996) Algorithms for Image Processing and Computer Vision, John Wiley and Sons Inc., New York, NY.Google Scholar
  4. 4.
    Myler, H. R. and Weeks, A. R. (eds.) (1993) The Pocket Handbook of Image Processing Algorithms in C, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  5. 5.
    Seul, M., O’Gorman, L., and Sammon, M. J. (eds.) (2000) Practical Algorithms for Image Analysis, Cambridge University Press, Cambridge, UK.Google Scholar
  6. 6.
    Comley, J. (2005) High content screening. Drug Discov. World Summer 2005, 31–53.Google Scholar
  7. 7.
    Klenk, J., Binnig, G., and Schmidt, G. (2000) Handling complexity with self-organizing fractal semantic networks. Emergence 2(4), 151–162.CrossRefGoogle Scholar
  8. 8.
    Klenk, J., Binnig, G., and Bergan, E. (2001) Modeling knowledge and reasoning using locally active elements in semantic networks. In Proceedings of ES2001, the Twenty-first SGES International Conference on Knowledge Based Systems and Applied Artificial Intelligence (Bramer, M., Coenen, F., and Preece, A., eds., Springer, New York, NY.Google Scholar
  9. 9.
    Binnig, G., Baatz, M., Klenk, J., and Schmidt, G. (2002) Will machines start to think like humans? Europhys. News 33(2), 44–47.CrossRefGoogle Scholar

Copyright information

© Humana Press, Inc. 2007

Authors and Affiliations

  • Juergen A. Klenk
    • 1
  1. 1.Booz Allen Hamilton, Inc.McLean

Personalised recommendations