Skip to main content

Techniques to Decipher Molecular Diversity by Phage Display

  • Protocol
Cardiovascular Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 357))

Abstract

Combinatorial phage display technology may be applied to decipher the molecular diversity of peptide binding specificity to isolated proteins, purified antibodies, cell surfaces, intracellular/cyto-domains, and blood vessels in vivo. The application of such a strategy ranges from identifying receptor-ligand pairs and antigen binding sites to understanding the progression of diseases by their differential expression patterns and developing therapeutic targeting strategies. Different strategies can be used to isolate peptides from diverse libraries displayed on the surface of bacteriophage by exposing the library to a target molecule or organ, washing away nonbinding phage, eluting and amplifying the bound phage for multiple round use, and then analyzing the peptide sequences of the enriched phage. The following methods first outline the construction of a phage library and then delineate various in vitro and in vivo biopanning applications to probe isolated integrins, purified antibodies, cell surface molecules, and vascular endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.

    Article  PubMed  CAS  Google Scholar 

  2. Pasqualini, R., Koivunen, E., Kain, R., et al. (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727.

    PubMed  CAS  Google Scholar 

  3. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., and Arap, W. (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632.

    Article  PubMed  CAS  Google Scholar 

  4. Marchio, S., Lahdenranta, J., Schlingemann, R. O., et al. (2004) Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5, 151–162.

    Article  PubMed  CAS  Google Scholar 

  5. Pasqualini, R., Arap, W., and McDonald, D. M. (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol. Med. 8, 563–571.

    Article  PubMed  CAS  Google Scholar 

  6. Koivunen, E., Wang, B., and Ruoslahti, E. (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13, 265–270.

    Article  PubMed  CAS  Google Scholar 

  7. Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R., and Ruoslahti, E. (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437.

    Article  PubMed  CAS  Google Scholar 

  8. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380.

    Article  PubMed  CAS  Google Scholar 

  9. Arap, W., Kolonin, M. G., Trepel, M., et al. (2002) Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127.

    Article  PubMed  CAS  Google Scholar 

  10. Koivunen, E., Arap, W., Rajotte, D., Lahdenranta, J., and Pasqualini, R. (1999) Identification of receptor ligands with phage display peptide libraries. J. Nucl. Med. 40, 883–888.

    PubMed  CAS  Google Scholar 

  11. Marchio, S., Alfano, M., Primo, L., et al. (2005) Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood 105, 2802–2811.

    Article  PubMed  CAS  Google Scholar 

  12. Cortese, R., Monaci, P., Luzzago, A., et al. (1996) Selection of biologically active peptides by phage display of random peptide libraries. Curr. Opin. Biotechnol. 7, 616–621.

    Article  PubMed  CAS  Google Scholar 

  13. Burritt, J. B., Bond, C. W., Doss, K. W., and Jesaitis, A. J. (1996) Filamentous phage display of oligopeptide libraries. Anal. Biochem. 238, 1–13.

    Article  PubMed  CAS  Google Scholar 

  14. Mintz, P. J., Kim, J., Do, K. A., et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21, 57–63.

    Article  PubMed  CAS  Google Scholar 

  15. Vidal, C. I., Mintz, P. J., Lu, K., et al. (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23, 8859–8867.

    Article  PubMed  CAS  Google Scholar 

  16. Ruoslahti, E. (1996) RGD and other recognition sequences for integrins. Ann. Rev. Cell Dev. Biol. 12, 697–715.

    Article  CAS  Google Scholar 

  17. Koivunen, E., Arap, W., Valtanen, H., et al. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768–774.

    Article  PubMed  CAS  Google Scholar 

  18. Cardo-Vila, M., Arap, W., and Pasqualini, R. (2003) avb5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol. Cell 11, 1151–1162.

    Article  PubMed  CAS  Google Scholar 

  19. Giordano, R. J., Cardo-Vila, M., Lahdenranta, J., Pasqualini, R., and Arap, W. (2001) Biopanning and rapid analysis of selective interactive ligands. Nat. Med. 7, 1249–1253.

    Article  PubMed  CAS  Google Scholar 

  20. Giordano, R., Chammas, R., Veiga, S. S., Colli, W., and Alves, M. J. (1994) An acidic component of the heterogeneous Tc-85 protein family from the surface of Trypanosoma cruzi is a laminin binding glycoprotein. Mol. Biochem. Parasitol. 65, 85–94.

    Article  PubMed  CAS  Google Scholar 

  21. Levesque, J. P., Hatzfeld, A., and Hatzfeld, J. (1985) A method to measure receptor binding of ligands with low affinity. Application to plasma proteins binding assay with hemopoietic cells. Exp. Cell Res. 156, 558–562.

    Article  PubMed  CAS  Google Scholar 

  22. Kolonin, M. G., Pasqualini, R., and Arap, W. (2002) Teratogenicity induced by targeting a placental immunoglobulin transporter. Proc. Natl. Acad. Sci. USA 99, 13,055–13,060.

    Article  PubMed  CAS  Google Scholar 

  23. Pasqualini, R., Arap, W., and McDonald, D. M. (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol. Med. 8, 563–571.

    Article  PubMed  CAS  Google Scholar 

  24. Essler, M. and Ruoslahti, E. (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. USA 99, 2252–2257.

    Article  PubMed  CAS  Google Scholar 

  25. Rajotte, D. and Ruoslahti, E. (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11,593–11,598.

    Article  PubMed  CAS  Google Scholar 

  26. Pasqualini, R. and Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366.

    Article  PubMed  CAS  Google Scholar 

  27. Trepel, M., Arap, W., and Pasqualini, R. (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6, 399–404.

    Article  PubMed  CAS  Google Scholar 

  28. George, A. J., Lee, L., and Pitzalis, C. (2003) Isolating ligands specific for human vasculature using in vivo phage selection. Trends Biotechnol. 21, 199–203.

    Article  PubMed  CAS  Google Scholar 

  29. Koivunen, E., Gay, D. A., and Ruoslahti, E. (1993) Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. J. Biol. Chem. 268, 20,205–20,210.

    PubMed  CAS  Google Scholar 

  30. Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 15, 542–546.

    Article  PubMed  CAS  Google Scholar 

  31. Burg, M. A., Pasqualini, R., Arap, W., Ruoslahti, E., and Stallcup, W. B. (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res. 59, 2869–2874.

    PubMed  CAS  Google Scholar 

  32. Hoffman, J. A., Giraudo, E., Singh, M., et al. (2003) Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4, 383–391.

    Article  PubMed  CAS  Google Scholar 

  33. Joyce, J. A., Laakkonen, P., Bernasconi, M., Bergers, G., Ruoslahti, E., and Hanahan, D. (2003) Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4, 393–403.

    Article  PubMed  CAS  Google Scholar 

  34. Kolonin, M. G., Pasqualini, R., and Arap, W. (2001) Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313.

    Article  PubMed  CAS  Google Scholar 

  35. Pasqualini, R. and Arap, W. (2002) Translation of vascular proteomics into individualized therapeutics, in Pharmacogenomics: The Search for Individualized Therapies (Licino, J. and Won, M. L., eds.). Wiley-VCH, Weinheim, Germany, pp. 525–530.

    Google Scholar 

  36. Ellerby, H. M., Arap, W., Ellerby, L. M., et al. (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5, 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  37. Curnis, F., Sacchi, A., Borgna, L., Magni, F., Gasparri, A., and Corti, A. (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 18, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  38. Yao, V. J., Ozawa, M. G., Trepel, M., Arap, W., McDonald, D. M., and Pasqualini, R. (2005) Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am. J. Pathol. 166, 625–636.

    Article  PubMed  CAS  Google Scholar 

  39. Smith, G. P. and Scott, J. K. (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.

    Article  PubMed  CAS  Google Scholar 

  40. Barbas, C. F., III, Burton, D. R., Scott, J. K., and Silverman, G. J. (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  41. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  42. Kolonin, M., Pasqualini, R., and Arap, W. (2001) Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Christianson, D.R., Ozawa, M.G., Pasqualini, R., Arap, W. (2007). Techniques to Decipher Molecular Diversity by Phage Display. In: Vivanco, F. (eds) Cardiovascular Proteomics. Methods in Molecular Biology™, vol 357. Humana Press. https://doi.org/10.1385/1-59745-214-9:385

Download citation

  • DOI: https://doi.org/10.1385/1-59745-214-9:385

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-535-4

  • Online ISBN: 978-1-59745-214-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics