Techniques to Decipher Molecular Diversity by Phage Display

  • Dawn R. Christianson
  • Michael G. Ozawa
  • Renata Pasqualini
  • Wadih Arap
Part of the Methods in Molecular Biology™ book series (MIMB, volume 357)

Abstract

Combinatorial phage display technology may be applied to decipher the molecular diversity of peptide binding specificity to isolated proteins, purified antibodies, cell surfaces, intracellular/cyto-domains, and blood vessels in vivo. The application of such a strategy ranges from identifying receptor-ligand pairs and antigen binding sites to understanding the progression of diseases by their differential expression patterns and developing therapeutic targeting strategies. Different strategies can be used to isolate peptides from diverse libraries displayed on the surface of bacteriophage by exposing the library to a target molecule or organ, washing away nonbinding phage, eluting and amplifying the bound phage for multiple round use, and then analyzing the peptide sequences of the enriched phage. The following methods first outline the construction of a phage library and then delineate various in vitro and in vivo biopanning applications to probe isolated integrins, purified antibodies, cell surface molecules, and vascular endothelial cells.

Key Words

Phage display vascular targeting, molecular markers antibody fingerprinting angiogenesis biopanning BRASIL protein 

References

  1. 1.
    Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.PubMedCrossRefGoogle Scholar
  2. 2.
    Pasqualini, R., Koivunen, E., Kain, R., et al. (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727.PubMedGoogle Scholar
  3. 3.
    Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R., and Arap, W. (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632.PubMedCrossRefGoogle Scholar
  4. 4.
    Marchio, S., Lahdenranta, J., Schlingemann, R. O., et al. (2004) Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5, 151–162.PubMedCrossRefGoogle Scholar
  5. 5.
    Pasqualini, R., Arap, W., and McDonald, D. M. (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol. Med. 8, 563–571.PubMedCrossRefGoogle Scholar
  6. 6.
    Koivunen, E., Wang, B., and Ruoslahti, E. (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13, 265–270.PubMedCrossRefGoogle Scholar
  7. 7.
    Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R., and Ruoslahti, E. (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437.PubMedCrossRefGoogle Scholar
  8. 8.
    Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380.PubMedCrossRefGoogle Scholar
  9. 9.
    Arap, W., Kolonin, M. G., Trepel, M., et al. (2002) Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127.PubMedCrossRefGoogle Scholar
  10. 10.
    Koivunen, E., Arap, W., Rajotte, D., Lahdenranta, J., and Pasqualini, R. (1999) Identification of receptor ligands with phage display peptide libraries. J. Nucl. Med. 40, 883–888.PubMedGoogle Scholar
  11. 11.
    Marchio, S., Alfano, M., Primo, L., et al. (2005) Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood 105, 2802–2811.PubMedCrossRefGoogle Scholar
  12. 12.
    Cortese, R., Monaci, P., Luzzago, A., et al. (1996) Selection of biologically active peptides by phage display of random peptide libraries. Curr. Opin. Biotechnol. 7, 616–621.PubMedCrossRefGoogle Scholar
  13. 13.
    Burritt, J. B., Bond, C. W., Doss, K. W., and Jesaitis, A. J. (1996) Filamentous phage display of oligopeptide libraries. Anal. Biochem. 238, 1–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Mintz, P. J., Kim, J., Do, K. A., et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21, 57–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Vidal, C. I., Mintz, P. J., Lu, K., et al. (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23, 8859–8867.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruoslahti, E. (1996) RGD and other recognition sequences for integrins. Ann. Rev. Cell Dev. Biol. 12, 697–715.CrossRefGoogle Scholar
  17. 17.
    Koivunen, E., Arap, W., Valtanen, H., et al. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768–774.PubMedCrossRefGoogle Scholar
  18. 18.
    Cardo-Vila, M., Arap, W., and Pasqualini, R. (2003) avb5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol. Cell 11, 1151–1162.PubMedCrossRefGoogle Scholar
  19. 19.
    Giordano, R. J., Cardo-Vila, M., Lahdenranta, J., Pasqualini, R., and Arap, W. (2001) Biopanning and rapid analysis of selective interactive ligands. Nat. Med. 7, 1249–1253.PubMedCrossRefGoogle Scholar
  20. 20.
    Giordano, R., Chammas, R., Veiga, S. S., Colli, W., and Alves, M. J. (1994) An acidic component of the heterogeneous Tc-85 protein family from the surface of Trypanosoma cruzi is a laminin binding glycoprotein. Mol. Biochem. Parasitol. 65, 85–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Levesque, J. P., Hatzfeld, A., and Hatzfeld, J. (1985) A method to measure receptor binding of ligands with low affinity. Application to plasma proteins binding assay with hemopoietic cells. Exp. Cell Res. 156, 558–562.PubMedCrossRefGoogle Scholar
  22. 22.
    Kolonin, M. G., Pasqualini, R., and Arap, W. (2002) Teratogenicity induced by targeting a placental immunoglobulin transporter. Proc. Natl. Acad. Sci. USA 99, 13,055–13,060.PubMedCrossRefGoogle Scholar
  23. 23.
    Pasqualini, R., Arap, W., and McDonald, D. M. (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol. Med. 8, 563–571.PubMedCrossRefGoogle Scholar
  24. 24.
    Essler, M. and Ruoslahti, E. (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. USA 99, 2252–2257.PubMedCrossRefGoogle Scholar
  25. 25.
    Rajotte, D. and Ruoslahti, E. (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11,593–11,598.PubMedCrossRefGoogle Scholar
  26. 26.
    Pasqualini, R. and Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366.PubMedCrossRefGoogle Scholar
  27. 27.
    Trepel, M., Arap, W., and Pasqualini, R. (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6, 399–404.PubMedCrossRefGoogle Scholar
  28. 28.
    George, A. J., Lee, L., and Pitzalis, C. (2003) Isolating ligands specific for human vasculature using in vivo phage selection. Trends Biotechnol. 21, 199–203.PubMedCrossRefGoogle Scholar
  29. 29.
    Koivunen, E., Gay, D. A., and Ruoslahti, E. (1993) Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. J. Biol. Chem. 268, 20,205–20,210.PubMedGoogle Scholar
  30. 30.
    Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 15, 542–546.PubMedCrossRefGoogle Scholar
  31. 31.
    Burg, M. A., Pasqualini, R., Arap, W., Ruoslahti, E., and Stallcup, W. B. (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res. 59, 2869–2874.PubMedGoogle Scholar
  32. 32.
    Hoffman, J. A., Giraudo, E., Singh, M., et al. (2003) Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4, 383–391.PubMedCrossRefGoogle Scholar
  33. 33.
    Joyce, J. A., Laakkonen, P., Bernasconi, M., Bergers, G., Ruoslahti, E., and Hanahan, D. (2003) Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4, 393–403.PubMedCrossRefGoogle Scholar
  34. 34.
    Kolonin, M. G., Pasqualini, R., and Arap, W. (2001) Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313.PubMedCrossRefGoogle Scholar
  35. 35.
    Pasqualini, R. and Arap, W. (2002) Translation of vascular proteomics into individualized therapeutics, in Pharmacogenomics: The Search for Individualized Therapies (Licino, J. and Won, M. L., eds.). Wiley-VCH, Weinheim, Germany, pp. 525–530.Google Scholar
  36. 36.
    Ellerby, H. M., Arap, W., Ellerby, L. M., et al. (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5, 1032–1038.PubMedCrossRefGoogle Scholar
  37. 37.
    Curnis, F., Sacchi, A., Borgna, L., Magni, F., Gasparri, A., and Corti, A. (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 18, 1185–1190.PubMedCrossRefGoogle Scholar
  38. 38.
    Yao, V. J., Ozawa, M. G., Trepel, M., Arap, W., McDonald, D. M., and Pasqualini, R. (2005) Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am. J. Pathol. 166, 625–636.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith, G. P. and Scott, J. K. (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.PubMedCrossRefGoogle Scholar
  40. 40.
    Barbas, C. F., III, Burton, D. R., Scott, J. K., and Silverman, G. J. (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  41. 41.
    Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.PubMedCrossRefGoogle Scholar
  42. 42.
    Kolonin, M., Pasqualini, R., and Arap, W. (2001) Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Dawn R. Christianson
    • 1
    • 2
  • Michael G. Ozawa
    • 1
  • Renata Pasqualini
    • 1
  • Wadih Arap
    • 1
  1. 1.Department of Genitourinary Medical OncologyThe University of Texas M. D. Anderson Cancer CenterHouston
  2. 2.Graduate School of Biomedical SciencesThe University of Texas Health Science CenterHouston

Personalised recommendations