Skip to main content

Animal Models for Heart Failure

  • Protocol
Cardiovascular Disease

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 129))

  • 1333 Accesses

Abstract

Heart failure (HF) is a major cause of morbidity and mortality worldwide. Although many therapeutic means are available to prolong the life of HF patients, why HF develops is still poorly understood. Investigators still seek a truly appropriate animal model that will reliably mimic human HF, so that the cause of the disease can be targeted and proper therapeutic modalities implemented. HF is a complex condition in which multiple molecular mechanisms interact, resulting in compromised cardiac function and often death. Once this elusive animal model is found, investigators will be able to translate findings from the model to human disease, thereby allowing analysis of the molecular changes and dissecting out multiple complicated changes in HF cascade. In this chapter, we describe the methodology that is used to analyze both transcriptional and translational molecular changes and correlate them with cardiac function to assess the cause-and-effect relationship to HF. We used one particular animal model of HF as an example (induced by causing overexpression of myotrophin specifically in the heart) that allowed us to analyze the changes during initiation, progression, and transition of hypertrophy to HF. We have also summarized some other animal models of HF currently available to study mechanisms of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleland, J. G., Khand, A., and Clark, A. L. (2001) The HF epidemic: exactly how big is it? Eur. Heart J. 22, 623–626.

    Article  CAS  PubMed  Google Scholar 

  2. Mann, D. L. and Bristow, M. R. (2005) Mechanisms and models in HF: the biomechanical model and beyond. Circulation 111, 2837–2849.

    Article  PubMed  Google Scholar 

  3. Hoshijima, M. and Chien, K. R. (2002) Mixed signals in HF: cancer rules. J. Clin. Invest. 109, 849–855.

    CAS  PubMed  Google Scholar 

  4. McMurray, J. and Pfeffer, M. A. (2002) New therapeutic options in congestive HF: Part I. Circulation 105, 2099–2106.

    Article  PubMed  Google Scholar 

  5. McMurray, J. and Pfeffer, M. A. (2002) New therapeutic options in congestive HF: Part II. Circulation 105, 2223–2228.

    Article  PubMed  Google Scholar 

  6. Dignam, J. D., Martin, P. L., Shastry, B. S., and Roeder, R. G. (1983) Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598.

    Article  CAS  PubMed  Google Scholar 

  7. Iwaki, K., Sukhatme, V. P., Shubeita, H. E., and Chien, K. R. (1990) Alpha-and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J. Biol. Chem. 265, 13,809–13,817.

    CAS  PubMed  Google Scholar 

  8. Tamayo, P., Slonim, D. Mesirov, J., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.

    Article  CAS  PubMed  Google Scholar 

  9. Sen, S., Kundu, G., Mekhail, N., Castel, J., Misono, K., and Healy, B. (1990) Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem. 265, 16,635–16,643.

    CAS  PubMed  Google Scholar 

  10. Sil, P., Misono, K., and Sen, S. (1993) Myotrophin in human cardiomyopathic heart. Circ. Res. 73, 98–108.

    CAS  PubMed  Google Scholar 

  11. Mukherjee, D. P., McTiernan, C. F., and Sen, S. (1993) Myotrophin induces early response genes and enhances cardiac gene expression. Hypertension 21, 142–148.

    CAS  PubMed  Google Scholar 

  12. Sil, P., Kandaswamy, V., and Sen, S. (1998) Increased protein kinase C activity in myotrophin-induced myocyte growth. Circ. Res. 82, 1173–1188.

    CAS  PubMed  Google Scholar 

  13. Sivasubramanian, N., Adhikary, G., Sil, P. C., and Sen, S. (1996) Cardiac myotrophin exhibits rel/NF-kappa B interacting activity in vitro. J. Biol. Chem. 271, 2812–2816.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, K. M., Berrebi-Bertrand, I., Kirkpatrick, R. B., et al. (1999) cDNA sequence and characterization of the gene that encodes human myotrophin/V-1 protein, a mediator of cardiac hypertrophy. J. Mol. Cell. Cardiol. 31, 705–719.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, S. and Sen, S. (2002) Myotrophin-kappaB DNA interaction in the initiation process of cardiac hypertrophy. Biochim. Biophys. Acta 1589, 247–260.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, S., Purcell, N. H., Lin, A., and Sen, S. (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J. Cell Biol. 159, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  17. Adhikary, G., Gupta, S., Sil, P., Saad, Y., and Sen, S. (2005) Characterization and functional significance of myotrophin: a gene with multiple transcripts. Gene 353, 31–40.

    Article  CAS  PubMed  Google Scholar 

  18. Subramaniam, A., Jones, W. K., Gulick, J., Wert, S., Neumann, J., and Robbins, J. (1991) Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24,613–24,620.

    CAS  PubMed  Google Scholar 

  19. Sarkar, S., Leaman, D. W., Gupta, S., et al. (2004) Cardiac overexpression of myotrophin triggers myocardial hypertrophy and HF in transgenic mice. J. Biol. Chem. 279, 20,422–20,434.

    Article  CAS  PubMed  Google Scholar 

  20. Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., and Feldman, A. M. (1997) Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. J. Card. Fail. 3, 117–124.

    Article  CAS  PubMed  Google Scholar 

  21. Kubota, T., McTiernan, C. F., Frye, C. S., et al. (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ. Res. 81, 627–635.

    CAS  PubMed  Google Scholar 

  22. Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–312.

    Article  CAS  PubMed  Google Scholar 

  23. Bowling, N., Walsh, R. A., Song, G., et al. (1999) Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99, 384–391.

    CAS  PubMed  Google Scholar 

  24. Wakasaki, H., Koya, D., Schoen, F. J., et al. (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc. Natl. Acad. Sci. USA 94, 9320–9325.

    Article  CAS  PubMed  Google Scholar 

  25. Bowman, J. C., Steinberg, S. F., Jiang, T., Geenen, D. L., Fishman, G. I., and Buttrick, P. M. (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J. Clin. Invest. 100, 2189–2195.

    Article  CAS  PubMed  Google Scholar 

  26. Roman, B. B., Geenen, D. L., Leitges, M., and Buttrick, P. M. (2001) PKC-beta is not necessary for cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 280, H2264–H2270.

    CAS  PubMed  Google Scholar 

  27. Xuan, Y. T., Tang, X. L., Banerjee, S., et al. (1999) Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ. Res. 84, 1095–1109.

    CAS  PubMed  Google Scholar 

  28. Morgan, E. N., Boyle, E. M., Jr., Yun, W., et al. (1999) An essential role for NF-kappaB in the cardioadaptive response to ischemia. Ann. Thorac. Surg. 68, 377–382.

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie, M. E. (1998) Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98, 1707–1713.

    CAS  PubMed  Google Scholar 

  30. Wong, S. C., Fukuchi, M., Melnyk, P., Rodger, I., and Giaid, A. (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive HF. Circulation 98, 100–103.

    CAS  PubMed  Google Scholar 

  31. Groner, F., Rubio, M., Schulte-Euler, P., et al. (2004) Single-channel gating and regulation of human L-type calcium channels in cardiomyocytes of transgenic mice. Biochem. Biophys. Res. Commun. 314, 878–884.

    Article  CAS  PubMed  Google Scholar 

  32. Sato, Y., Ferguson, D. G., Sako, H., et al. (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28,470–28,477.

    Article  CAS  PubMed  Google Scholar 

  33. Jones, L. R., Suzuki, Y. J., Wang, W., et al. (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385–1393.

    Article  CAS  PubMed  Google Scholar 

  34. Linck, B., Boknik, P., Huke, S., et al. (2000) Functional properties of transgenic mouse hearts overexpressing both calsequestrin and the Na+-Ca2+ exchanger. J. Pharmacol. Exp. Ther. 294, 648–657.

    CAS  PubMed  Google Scholar 

  35. Ito, K., Yan, X., Feng, X., Manning, W. J., Dillmann, W. H., and Lorell, B. H. (2001) Transgenic expression of sarcoplasmic reticulum Ca2+ ATPase modifies the transition from hypertrophy to early HF. Circ. Res. 89, 422–429.

    Article  CAS  PubMed  Google Scholar 

  36. Periasamy, M., Reed, T. D., Liu, L. H., et al. (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J. Biol. Chem. 274, 2556–2562.

    Article  CAS  PubMed  Google Scholar 

  37. Schultz Jel, J., Glascock, B. J., Witt, S. A., et al. (2004) Accelerated onset of HF in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am. J. Physiol. Heart. Circ. Physiol. 286, H1146–H1153.

    Article  PubMed  Google Scholar 

  38. Meyer, M., Schillinger, W., Pieske, B., et al. (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92, 778–784.

    CAS  PubMed  Google Scholar 

  39. Neumann, J., Boknik, P., DePaoli-Roach, A. A., et al. (1998) Targeted overexpression of phospholamban to mouse atrium depresses Ca2+ transport and contractility. J. Mol. Cell. Cardiol. 30, 1991–2002.

    Article  CAS  PubMed  Google Scholar 

  40. Dash, R., Kadambi, V., Schmidt, A. G., et al. (2001) Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 103, 889–896.

    CAS  PubMed  Google Scholar 

  41. Schmitt, J. P., Kamisago, M., Asahi, M., et al. (2003) Dilated cardiomyopathy and HF caused by a mutation in phospholamban. Science 299, 1410–1413.

    Article  CAS  PubMed  Google Scholar 

  42. Crabtree, G. R. (1999) Generic signals and specific outcomes: signaling through calcium2+, calcineurin and NF-AT. Cell 96, 611–614.

    Article  CAS  PubMed  Google Scholar 

  43. Molkentin, J. D., Lu, J. R., Antos, C. L., et al. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228.

    Article  CAS  PubMed  Google Scholar 

  44. Dong, D., Duan, Y., Guo, J., et al. (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ hannels. Cardiovasc. Res. 57, 320–332.

    Article  CAS  PubMed  Google Scholar 

  45. Molkentin, J. D. and Dorn, G. W. II. (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426.

    Article  CAS  PubMed  Google Scholar 

  46. Rockman, H. A., Ross, R. S., Harris, A. N., et al. (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88, 8277–8281. [Erratum re Fig. 2B is noted in Proc. Natl. Acad. Sci. USA 88, 9907.]

    Article  CAS  PubMed  Google Scholar 

  47. Boluyt, M. O., Robinson, K. G., Meredith, A. L., et al. (2005) Heart failure after long-term supravalvular aortic constriction in rats. Am. J. Hypertens. 18(2 Pt 1), 202–212.

    Article  PubMed  Google Scholar 

  48. Esposito, G., Rapacciuolo, A., Naga Prasad, S. V., et al. (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92.

    Article  CAS  PubMed  Google Scholar 

  49. Carabello, B. A. (1996) Models of volume overload hypertrophy. J. Card. Fail. 2, 55–64.

    Article  CAS  PubMed  Google Scholar 

  50. Scheuermann-Freestone, M., Freestone, N. S., Langenickel, T., Hohnel, K., Dietz, R., and Willenbrock, R. (2001) A new model of congestive HF in the mouse due to chronic volume overload. Eur. J. Heart Fail. 5, 535–543.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gupta, S., Sen, S. (2006). Animal Models for Heart Failure. In: Wang, Q.K. (eds) Cardiovascular Disease. Methods in Molecular Medicine, vol 129. Humana Press. https://doi.org/10.1385/1-59745-213-0:97

Download citation

  • DOI: https://doi.org/10.1385/1-59745-213-0:97

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-892-8

  • Online ISBN: 978-1-59745-213-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics