Skip to main content

Animal Models for Disease

Knockout, Knock-In, and Conditional Mutant Mice

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 129))

Abstract

Diseases with a genetic basis can be modeled with knockout, knock-in, and conditional mutant gene-targeted mice. In the following, we provide detailed protocols for gene targeting. Gene targeting of embryonic stem cells can be accomplished by laboratories equipped for tissue culture. Alternatively, many gene-targeting services divide the work of targeting with a customer lab. In this collaborative situation, knowledge of the entire process helps ensure a successful outcome. The construction of chimeras for germ-line transmission is not described here, because this procedure is beyond the means of most laboratories, typically is provided by transgenic core facilities, and is best learned through hands-on demonstration.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  CAS  PubMed  Google Scholar 

  2. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  3. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  CAS  PubMed  Google Scholar 

  4. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  CAS  PubMed  Google Scholar 

  5. Doetschman, T., Gregg, R. G., Maeda, N., et al. (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.

    Article  CAS  PubMed  Google Scholar 

  6. Davis, J. (Ed.) (2002) Basic Cell Culture: A Practical Approach. Oxford University Press, Oxford, UK.

    Google Scholar 

  7. Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2003) Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  8. Hasty, P., Abuin, A., and Bradley, A. (2000) Gene targeting, principles, and practice in mammalian cells, in Gene Targeting. A Practical Approach, Vol. 212 (Joyner, A. L., ed.). Oxford University Press, Oxford, UK, pp. 1–35.

    Google Scholar 

  9. Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A. B., and Joyner, A. L. (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682.

    Article  CAS  PubMed  Google Scholar 

  10. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  CAS  PubMed  Google Scholar 

  11. te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  12. Hasty, P., Rivera-Perez, J., and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11, 5586–5591.

    CAS  PubMed  Google Scholar 

  13. Meyers, E. N., Lewandoski, M., and Martin, G. R. (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet. 18, 136–141.

    Article  CAS  PubMed  Google Scholar 

  14. Nagy, A., Moens, C., Ivanyi, E., et al. (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8, 661–664.

    Article  CAS  PubMed  Google Scholar 

  15. Olson, E. N., Arnold, H. H., Rigby, P. W., and Wold, B. J. (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ren, S. Y., Angrand, P. O., and Rijli, F. M. (2002) Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev. Dyn. 225, 305–315.

    Article  CAS  PubMed  Google Scholar 

  17. Hasty, P., Rivera-Perez, J., Chang, C., and Bradley, A. (1991) Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol. 11, 4509–4517.

    CAS  PubMed  Google Scholar 

  18. Moens, C. B., Auerbach, A. B., Conlon, R. A., Joyner, A. L., and Rossant, J. (1992) A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev. 6, 691–704.

    Article  CAS  PubMed  Google Scholar 

  19. Chui, D., Oh-Eda, M., Liao, Y. F., et al. (1997) Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90, 157–167.

    Article  CAS  PubMed  Google Scholar 

  20. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T., and Mulligan, R. C. (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  21. Robertson, E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Vol. 212, (Robertson, E. J., ed.), Oxford University Press, Oxford, UK, pp. 71–112.

    Google Scholar 

  22. Auerbach, W., Dunmore, J. H., Fairchild-Huntress, V., et al. (2000) Establishment and chimera analysis of 129/SvEv-and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29, 1024–1032.

    CAS  PubMed  Google Scholar 

  23. You, Y., Bersgtram, R., Klemm, M., Nelson, H., Jaenisch, R., and Schimenti, J. (1998) Utility of C57BL/6J x 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm. Genome 9, 232–234.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, J. W., LaMantia, C., and Magnuson, T. (1998) X-ray-induced mutations in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  25. Brook, F. A., Evans, E. P., Lord, C. J., et al. (2003) The derivation of highly germline-competent embryonic stem cells containing NOD-derived genome. Diabetes 52, 205–208.

    Article  CAS  PubMed  Google Scholar 

  26. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    Article  CAS  PubMed  Google Scholar 

  27. Mereau, A., Grey, L., Piquet-Pellorce, C., and Heath, J. K. (1993) Characterization of a binding protein for leukemia inhibitory factor localized in extracellular matrix. J. Cell. Biol. 122, 713–719.

    Article  CAS  PubMed  Google Scholar 

  28. Matise, M. P., Auerbach, W., and Joyner, A. L. (2000) Production of targeted embryonic stem cell clones, in Gene Targeting. A Practical Approach, Vol. 212, (Joyner, A. L., ed.), Oxford University Press, Oxford, UK, pp. 101–132.

    Google Scholar 

  29. O’Gorman, S., Dagenais, N. A., Qian, M., and Marchuk, Y. (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 14,602–14,607.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

LePage, D.F., Conlon, R.A. (2006). Animal Models for Disease. In: Wang, Q.K. (eds) Cardiovascular Disease. Methods in Molecular Medicine, vol 129. Humana Press. https://doi.org/10.1385/1-59745-213-0:41

Download citation

  • DOI: https://doi.org/10.1385/1-59745-213-0:41

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-892-8

  • Online ISBN: 978-1-59745-213-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics