Skip to main content

Guidelines for the Selection of Effective Short-Interfering RNA Sequences for Functional Genomics

  • Protocol
Target Discovery and Validation Reviews and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 361))

Abstract

To avoid long-double-stranded-RNA-dependent interferon response, short-interfering RNAs (siRNAs) are widely used for RNA interference (RNAi) in mammalian cells. siRNA-based RNAi, however, may not be readily available for the large-scale gene silencing essential for systematic functional genomics, because only a limited fraction of siRNAs is capable of inducing effective mammalian RNAi. siRNAs correctly designed for the knockdown of a particular gene may also destroy the functions of unrelated genes. Here, we describe algorithms by which these serious setbacks can be eliminated in mammalian functional genomics using RNAi and a Web-based online software system for computing highly functional siRNA sequences with maximal target-specificity in mammalian RNAi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  2. Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467.

    Article  CAS  PubMed  Google Scholar 

  3. Mello, C. C. and Conte Jr, D. (2004) Revealing the world of RNA interference. Nature 431, 338–342.

    Article  CAS  PubMed  Google Scholar 

  4. Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  6. Ketting, R. F., Fischer, S. E. J., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. A. (2001) Dicer functions in RNA interference and in synthesis of small developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  7. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21 and 22 nt RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  8. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  10. Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K. (2000) Sensitive assay of RNA interference in Drosophila and chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 479, 79–82.

    Article  CAS  PubMed  Google Scholar 

  11. Billy, E., Brondani, V., Zhang, H., Müller, U., and Filipowicz, W. (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14,428–14,433.

    Article  CAS  PubMed  Google Scholar 

  12. Paddison, P. J., Caudy, A. A., and Hannon, G. J. (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, S., Tutton, S., Pierce, E., and Yoon, K. (2001) Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816.

    Article  CAS  PubMed  Google Scholar 

  14. Wianny, F. and Zemicka-Goetz, M. (1999) Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.

    Article  Google Scholar 

  15. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  16. Nykänen, A., Haley, B., and Zamore, P. D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321.

    Article  PubMed  Google Scholar 

  17. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  CAS  PubMed  Google Scholar 

  18. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  19. Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002) Fragile X-related protein and VIG associated with the RNA interference machinery. Genes Dev. 16, 2491–2496.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.

    Article  CAS  PubMed  Google Scholar 

  21. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888.

    Article  CAS  PubMed  Google Scholar 

  22. Holen, T., Amrzguioui, M., Wiiger, M. T., Babaie, E., and Prydz, H. (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766.

    Article  CAS  PubMed  Google Scholar 

  23. Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotech. 22, 326–330.

    Article  CAS  Google Scholar 

  25. Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem. Briophys. Res. Commun. 316, 1050–1058.

    Article  CAS  Google Scholar 

  26. Doi, N., Zenno, S., Ueda, R., Ohki-Hamazaki, H., Ui-Tei, K., and Saigo, K. (2003) Short-interfering-RNA mediated gene silencing in mammalian cells requires Direr and eIF2C translation initiation factors. Curr. Biol. 13, 41–46.

    Article  CAS  PubMed  Google Scholar 

  27. Song, J.-J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  28. Ma, J.-B., Ye, K., and Patel, D. J. (2004) Structural basis for overhang-specific small interfereing RNA recognition by the PAZ domain. Nature 429, 318–322.

    Article  CAS  PubMed  Google Scholar 

  29. Ma, J.-B., Yuan, Y.-R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670.

    Article  CAS  PubMed  Google Scholar 

  30. Ding, H., Schwarz, D. S., Keene, A., et al. (2003) Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209–217.

    Article  CAS  PubMed  Google Scholar 

  31. Du, Q., Thonberg, H., Wang, J., Wahlestedt, C., and Liang, Z. (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 33, 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, A. L., Bartz, S. R., Schelter, J., et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotech. 21, 635–637.

    Article  CAS  Google Scholar 

  33. Naito, Y., Yamada, T., Ui-Tei, K., Morishita, S., and Saigo, K. (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 32, W124–W129.

    Article  CAS  PubMed  Google Scholar 

  34. Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  CAS  PubMed  Google Scholar 

  35. Yamada, T. and Morishita, S. (2005) Accelerated off-target search algorithm for siRNA. Bioinformatics 21, 1316–1324.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ui-Tei, K., Naito, Y., Saigo, K. (2007). Guidelines for the Selection of Effective Short-Interfering RNA Sequences for Functional Genomics. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:201

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:201

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics