Advertisement

Heterotrimeric G Proteins and Disease

  • Øyvind Melien
Part of the Methods in Molecular Biology™ book series (MIMB, volume 361)

Abstract

Heterotrimeric G proteins attached to the cell membrane convey signals from G protein-coupled receptors in response to stimulation by a number of hormones, neurotransmitters, chemokines, and pharmacological agents to intracellular signaling cascades. The heterotrimeric G proteins are also located in the cell interior, and receptor-independent mechanisms may elicit their activation. Thus, G proteins may possibly exert cellular functions other than acting as signaling transducers. There is also increasing evidence for roles in different diseases including infections, inflammation, neurological diseases, cardiovascular diseases, cancer, and endocrine disorders. This review describes characteristics of the heterotrimeric G proteins, evidence for their involvement in different diseases, and outlines some of the therapeutic options utilizing G protein targets.

Key Words

Heterotrimeric G proteins disease therapy 

References

  1. 1.
    Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Rodbell, M. (1995) Signal transduction: evolution of an idea. Biosci. Rep. 15, 117–133.PubMedCrossRefGoogle Scholar
  3. 3.
    Rodbell, M. (1997) The complex regulation of receptor-coupled G-proteins. Adv. Enzyme Reg. 37, 427–435.CrossRefGoogle Scholar
  4. 4.
    Gilman, A. (1995) G proteins and regulation of adenylyl cyclase. Biosci. Rep. 15, 65–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257.PubMedCrossRefGoogle Scholar
  6. 6.
    Birnbaumer, L. and Birnbaumer, M. (1995) Signal transduction by G proteins: 1994 edition. J. Recept. Signal. Transduct. Res. 15, 213–252.PubMedCrossRefGoogle Scholar
  7. 7.
    Birnbaumer, M. (1995) Mutations and diseases of G protein-coupled receptors. J. Recept. Signal Transduct. Res. 15, 131–160.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669–672.PubMedCrossRefGoogle Scholar
  9. 9.
    Berman, D. M. and Gilman, A. G. (1998) Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272.PubMedCrossRefGoogle Scholar
  10. 10.
    Hepler, J. R. (1999) Emerging roles for RGS proteins in cell signalling. Trends Pharmacol. Sci. 20, 376–382.PubMedCrossRefGoogle Scholar
  11. 11.
    Rebois, R. V., Warner, D. R., and Basi, N. S. (1997) Does subunit dissociation necessarily accompany the activation of all heterotrimeric G proteins? Cell. Signal. 9, 141–151.PubMedCrossRefGoogle Scholar
  12. 12.
    Basi, N. S., Okuya, S., and Rebois, R. V. (1996) GTP binding to Gs does not promote subunit dissociation. Cell Signal. 8, 209–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Chidiac, P. (1998) Rethinking receptor-G protein-effector interactions. Biochem. Pharmacol. 55, 549–556.PubMedCrossRefGoogle Scholar
  14. 14.
    Klein, S., Reuveni, H., and Levitzki, A. (2000) Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc. Acad. Nat. Sci. USA 97, 3219–3223.CrossRefGoogle Scholar
  15. 15.
    Gutkind, J. S. (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17, 1331–1342.PubMedCrossRefGoogle Scholar
  16. 16.
    Takesono, A., Cismowski, M. J., Ribas, C., et al. (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274, 33,202–33,205.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato, M., Blumer, J. B., Simon, V., and Lanier S. M. (2005) Accessory proteins for G proteins: partners in signaling. Ann. Rev. Pharmacol. 46, 151–187.Google Scholar
  18. 18.
    Hepler, J. R. and Gilman, A. G. (1992) G proteins. Trends Biochem. Sci. 17, 383–387.PubMedCrossRefGoogle Scholar
  19. 19.
    Takei, Y., Kurosu, H., Takahashi, K., and Katada, T. (1992) A GTP-binding protein in rat liver nuclei serving as the specific substrate of pertussis toxin-catalyzed ADP-ribosylation. J. Biol. Chem. 267, 5085–5089.PubMedGoogle Scholar
  20. 20.
    Cadrin, M., McFarlane-Anderson, N., Harper, M. E., Gaffield, J., and Begin-Heick, N. (1996) Comparison of the subcellular distribution of G-proteins in hepatocytes in situ and in primary cultures. J. Cell. Biochem. 62, 334–341.PubMedCrossRefGoogle Scholar
  21. 21.
    Crouch, M. F. and Simson, L. (1997) The G-protein Gi regulates mitosis but not DNA synthesis in growth factor-activated fibroblasts: a role for the nuclear translocation of Gi. FASEB J. 11, 189–198.PubMedGoogle Scholar
  22. 22.
    Khan, Z. U. and Gutierrez, A. (2004) Distribution of C-terminal splice variant of Gαi2 in rat and monkey brain. Neuroscience 127, 833–843.PubMedCrossRefGoogle Scholar
  23. 23.
    Simonds, W. F., Woodard G. E., and Zhang, J.-H. (2004) Assays of nuclear localization of R7/Gβ5 compelxes. Meth. Enzymol. 390, 210–223.PubMedCrossRefGoogle Scholar
  24. 24.
    Kino, T., Tiulpakov, A., Ichijo, T., Chheng, L., Kozasa, T., and Chrousos, G. P. (2005) G protein β interacts with the glucocorticoid receptor and suppresses its transcriptional activity in the nucleus. J. Cell Biol. 169, 885–896.PubMedCrossRefGoogle Scholar
  25. 25.
    Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M. J. (1971) The glucagon-sensitive adenylyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J. Biol. Chem. 246, 1877–1882.PubMedGoogle Scholar
  26. 26.
    Pfeuffer, T. and Helmreich, E. J. M. (1975) Activation of pigeon erythrocyte membrane adenylate cyclase by guanyl nucleotide analogues and separation of nucleotide-binding protein. J. Biol. Chem. 250, 867–876.PubMedGoogle Scholar
  27. 27.
    Ross, E. M., and Gilman, A. G. (1977) Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem. 252, 6966–6969.PubMedGoogle Scholar
  28. 28.
    Daaka, Y., Luttrell. L. M., and Lefkowitz, R. J. (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Crespo, P., Cachero, T. G., Xu, N., and Gutkind, J. S. (1995) Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. Evidence for a βγ-dependent activation and a Gαs-cAMP-mediated inhibition. J. Biol. Chem. 270, 25,259–25,265.PubMedCrossRefGoogle Scholar
  30. 30.
    Grewal, S. S., Horgan, A. M., York, R. D., Withers, G. S., Banker, G. A., and Stork. P. J. S. (2000) Neuronal calcium activates a Rap1 and a B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem. 275, 3722–3728.PubMedCrossRefGoogle Scholar
  31. 31.
    Ganpat, M. M., Nishimura, M., Toyoshige, M., Okuya, S., Pointer, R. H. and Rebois, R. V. (1999) Evidence for stimulation of adenylyl cyclase by an activated G(s) heterotrimer in cell membranes: an experimental method for controlling the G(s) subunit composition of cell membranes. Cell Signal. 12, 113–122.CrossRefGoogle Scholar
  32. 32.
    Nair, B. G., Parikh, B., Milligan, G., and Patel, T. B. (1990) Gs alpha mediates epidermal growth factor-elicited stimulation of rat cardiac adenylate cyclase. J. Biol. Chem. 265, 21,317–21,322.PubMedGoogle Scholar
  33. 33.
    Ramirez, I., Tebar, F., Grau, M., and Soley, M. (1995) Role of heterotrimeric G-proteins in epidermal growth factor signalling. Cell. Signal. 7, 303–311.PubMedCrossRefGoogle Scholar
  34. 34.
    Sato-Kubasata, K., Yajima, Y., and Kawashima, S. (2000) Persistent activation of Gsα through limited proteolysis by calpain. Biochem. J. 347, 733–740.CrossRefGoogle Scholar
  35. 35.
    Moss, J. and Vaughan, M. (1979) Activation of adenylate cyclase by choleragen. Ann. Rev. Biochem. 48, 581–600.PubMedCrossRefGoogle Scholar
  36. 36.
    Murayama, T. and Ui, M. (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258, 3319–3326.PubMedGoogle Scholar
  37. 37.
    Morris, A. J. and Malbon, C. C. (1999) Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430.PubMedGoogle Scholar
  38. 38.
    Exton, J. H. (1997) Cell signalling through guanine-nucleotide-binding regulatory proteins (G proteins) and phospholipases. Eur. J. Biochem. 243, 10–20.PubMedCrossRefGoogle Scholar
  39. 39.
    van Biesen, T., Luttrell, L. M., Hawes, B. E., and Lefkowitz, R. J. (1996) Mitogenic signaling via G protein-coupled receptors. Endocr. Rev. 17, 698–714.PubMedCrossRefGoogle Scholar
  40. 40.
    Hedin, K. E., Bell, M. P., Huntoon, C. J., Karnitz, L. M., and McKean, D. J. (1999) Gi proteins use a novel βγ-and Ras-independent pathway to activate extracellular signal-regulated kinase and mobilize AP-1 transcription factors in Jurkat T lymphocytes. J. Biol. Chem. 274, 19,992–20,001.PubMedCrossRefGoogle Scholar
  41. 41.
    Takeda, H., Matozaki, T., Takada, T., et al. (1999) PI 3-kinase γ and protein kinase C-ζ mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO J. 18, 386–395.PubMedCrossRefGoogle Scholar
  42. 42.
    Kranenburg, O., Verlaan, I., Hordijk, P. L., and Molenaar, W. H. (1997) Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J. 16, 3097–3105.PubMedCrossRefGoogle Scholar
  43. 43.
    Melien, Ø., Thoresen, G. H., Sandnes, D., Østby, E., and Christoffersen, T. (1998) Activation of p42/p44 mitogen-activated protein kinase by angiotensin II, vasopressin, norepinephrine, and prostaglandin F in hepatocytes is sustained, and like the effect of epidermal growth factor, mediated through pertussis toxin-sensitive mechanisms. J. Cell. Physiol. 175, 348–358.PubMedCrossRefGoogle Scholar
  44. 44.
    Corre, I. and Hermouet, S. (1995) Regulation of colony-stimulating factor 1-induced proliferation by heterotrimeric Gi2 proteins. Blood 86, 1776–1783.PubMedGoogle Scholar
  45. 45.
    Miller, B. A., Bell, L., Hansen, C. A., Robishaw, J. D., Linder, M. E., and Cheung, J. Y. (1996) G-protein α subunit Giα2 mediates erythropoietin signal transduction in human erythroid precursors. J. Clin. Invest. 98, 1728–1736.PubMedCrossRefGoogle Scholar
  46. 46.
    Church, J. G. and Buick, R. N. (1988) G-protein-mediated epidermal growth factor signal transduction in a human breast cancer cell line. Evidence for two intracellular pathways distinguishable by pertussis toxin. J. Biol. Chem. 263, 4242–4246.PubMedGoogle Scholar
  47. 47.
    Liang, M. and Garrison, J. C. (1991) The epidermal growth factor receptor is coupled to a pertussis toxin-sensitive guanine nucleotide regulatory protein in rat hepatocytes. J. Biol. Chem. 266, 13,342–13,349.PubMedGoogle Scholar
  48. 48.
    Sanchez-Margalet, V., Gonzalez-Yanes, C., Santos-Alvarez, J., and Najib, S. (1999) Insulin activates Gαi1,2 protein in rat hepatoma (HTC) cell membranes. Cell. Mol. Life. Sci. 55, 142–147.PubMedCrossRefGoogle Scholar
  49. 49.
    Gao, J., Li, J., Chen, Y., and Ma, L. (2005) Activation of tyrosine kinase of EGFR induces Gβγ-dependent GRK-EGFR complex formation. FEBS Lett. 579, 122–126.PubMedCrossRefGoogle Scholar
  50. 50.
    Stow, J. L., de Almeida, J. B., Narula, N., Holtzman, E. J., Ercolani, L., and Ausiello, D. A. (1991) A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. J. Cell. Biol. 114, 1113–1124.PubMedCrossRefGoogle Scholar
  51. 51.
    Nürnberg, B. and Ahnert-Hilger, G. (1996) Potential roles of heterotrimeric G proteins of the endomembrane system. FEBS Lett. 389, 61–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Yamaguchi, T., Yamamoto, A., Furuno, A., et al. (1997) Possible involvement of heterotrimeric G proteins in the organization of the Golgi apparatus. J. Biol. Chem. 272, 25,260–25,266.PubMedCrossRefGoogle Scholar
  53. 53.
    Jamora, C., Yamanouye, N., Van Lint, J., et al. (1999) Gβγ-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98, 59–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Takei, Y., Takahashi, K., Kanaho, Y., and Katada, T. (1994) Possible involvement of a pertussis toxin-sensitive GTP-binding protein in protein transport into nuclei isolated from rat liver. J. Biochem. (Tokyo) 115, 578–583.Google Scholar
  55. 55.
    Saha, C., Nigam, S. K., and Denker, B. M. (1996) Involvement of Gαi2 in the maintenance and biogenesis of epithelial cell tight junctions. J. Biol. Chem. 273, 21,629–21,633.CrossRefGoogle Scholar
  56. 56.
    Jordan, J. D., Carey, K. D., Stork, P. J. S., and Iyengar, R. (1999) Modulation of Rap Activity by direct interaction of Gαo with Rap1 GTPase-activating protein. J. Biol. Chem. 274, 21,507–21,510.PubMedCrossRefGoogle Scholar
  57. 57.
    Ram, P. T., Horvath, C. M., and Iyengar, R. (2000) Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Gαo protein. Science 287, 142–144.PubMedCrossRefGoogle Scholar
  58. 58.
    Strittmatter, S. M., Valenzuela, D., Kennedy, T. E., Neer, E. J., and Fishman, M. C. (1990) Go is a major growth cone protein subject to regulation by GAP-43. Nature 344, 836–841.PubMedCrossRefGoogle Scholar
  59. 59.
    Kimple, M. E., Nixon, A. B., Kelly, P., et al. (2005) A role for Gz in pancreatic islet β-cell biology. J. Biol. Chem. 280, 31,708–31,713.PubMedCrossRefGoogle Scholar
  60. 60.
    Vorobiov, D., Bera, A. K., Keren-Raifman, T., Barzilai, R., and Dascal, N. (2000) Coupling of the muscarinic m2 receptor to G protein-activated K+ channels via Gαz and a receptor-Gαz fusion protein. J. Biol. Chem. 275, 4166–4170.PubMedCrossRefGoogle Scholar
  61. 61.
    Baumgartner, R. A., Hirasawa, N., Ozawa, K., Gusovsky, F., and Beaven, M. A. (1996) Enhancement of TNF-alpha synthesis by overexpression of G alpha z in a mast cell line. J. Immunol. 157, 1625–1629.PubMedGoogle Scholar
  62. 62.
    Meng, J., Glick, J. L. Polakis, P., and Casey, P. J. (1999) Functional interaction between Gαz and Rap1GAP suggest a novel form of cellular cross-talk. J. Biol. Chem. 274, 36,663–36,669.PubMedCrossRefGoogle Scholar
  63. 63.
    Meng, J. and Casey, P. J. (2002) Activation of Gz attenuates Rap-1mediated differentiation of PC12 cells. J. Biol. Chem. 277, 43,417–43,424.PubMedCrossRefGoogle Scholar
  64. 64.
    Fan, X., Brass, L. F., Poncz, M., Spitz, F., Maire, P., and Manning, D. R. (2000). The α subunits of Gz and Gi interact with the eyes absent transcription cofactor Eya2, preventing its interaction with the six class of homeodomain-containing proteins. J. Biol. Chem. 275, 32,129–32,134.PubMedCrossRefGoogle Scholar
  65. 65.
    Fields, T. A. and Casey, P. J. (1997) Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem. J. 321, 561–571.PubMedGoogle Scholar
  66. 66.
    Bence, K., Ma, W., Kozasa, T., and Huang, X. (1997) Direct stimulation of Bruton’s tyrosine kinase by G(q)-protein α-subunit. Nature 389, 296–299.PubMedCrossRefGoogle Scholar
  67. 67.
    LaMorte, V. J., Harootunian, A. T., Spiegel, A. M., Tsien, R. Y., and Feramisco, J. R. (1993) Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2. J. Cell. Biol. 121, 91–99.PubMedCrossRefGoogle Scholar
  68. 68.
    Della Rocca, G. J., van Biesen, T., Daaka, Y., Luttrell, D. K., Luttrell, L. M., and Lefkowitz, R. J. (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi-and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J. Biol. Chem. 272, 19,125–19,132.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilson, B., Zhu, X., Ho, M., and Lu, L. (1997) Pasteurella multocida toxin activates the inositol triphosphate signaling pathway in Xenopus oocytes via Gqα-coupled phospholipase C-β1. J. Biol. Chem. 272, 1268–1275.PubMedCrossRefGoogle Scholar
  70. 70.
    Chan, A. S. and Wong, Y. H. (2000) Regulation of c-Jun N-terminal kinase by the ORL(1) receptor through multiple G proteins. J. Pharmacol. Exp. Ther. 295, 1094–1100.PubMedGoogle Scholar
  71. 71.
    Lo, R. K. H. and Wong Y. H. (2004) Signal transducer and activator of transcription 3 activation by the δ-opioid receptor via Gα14 involves multiple intermediates. Mol. Pharmacol. 65, 1427–1439.PubMedCrossRefGoogle Scholar
  72. 72.
    Chan, A. S., Lai, F. P., Lo, R. K., Voyno-Yasenetskaya, T. A., Stanbridge, E. J., and Wong, Y. H (2002) Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and-insensitive G proteins. Cell Signal. 14, 249–257.PubMedCrossRefGoogle Scholar
  73. 73.
    Lo, R. K. H., Cheung, H., and Wong, Y. H. (2003) Constitutively active Gα16 stimulates STAT3 via a c-Src/JAK-and ERK-dependent mechanism. J. Biol. Chem. 278, 52,154–52,165.PubMedCrossRefGoogle Scholar
  74. 74.
    Milligan, G., Marshall, F., and Rees, S. (1996) G16 as a universal G protein adapter: implications for agonist screening strategies. Trends Pharm. Sci. 17, 235–237.PubMedCrossRefGoogle Scholar
  75. 75.
    Offermanns, S. and Schultz, G. (1994) What are the functions of the pertussis toxin-insensitive G proteins G12, G13, Gz? Mol. Cell. Endocrinol. 100, 71–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Dhanasekaran, N. and Dermott, J. M. (1996) Signaling by the G12 class of G proteins. Cell Signal. 8, 235–245.PubMedCrossRefGoogle Scholar
  77. 77.
    Orth, J. H. C., Lang, S., Taniguchi, M., and Aktories, K. (2005) Pasteurella multocida-induced activation of RhoA is mediated via two Gα proteins Gαq and Gα12/13. J. Biol. Chem. 280, 36,701–36,707.PubMedCrossRefGoogle Scholar
  78. 78.
    Macrez, N., Morel, J.-L., Kalkbrenner, F., Viard, P., and Schultz, G. (1997) A βγ dimer derived from G13 transduces the angiotensin AT1 receptor signal to stimulation of Ca2+ channels in rat portal vein myocytes. J. Biol. Chem. 272, 23,180–23,185.PubMedCrossRefGoogle Scholar
  79. 79.
    Collins, L. R., Minden, A., Karin, M., and Brown, J. H. (1996) Galpha12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J. Biol. Chem. 271, 17,349–17,353.PubMedCrossRefGoogle Scholar
  80. 80.
    Slice, L. W., Walsh, J. H., and Rozengurt, E. (1999) Galpha(13) stimulates Rho-dependent activation of the cyclooxygenase-2-promoter. J. Biol. Chem. 274, 27,562–27,566.PubMedCrossRefGoogle Scholar
  81. 81.
    Hart, M. J., Jiang, X., Kozasa, T., et al. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 280, 2112–2114.PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang, Y., Ma, W., Wan, Y., Kozasa, T., Hattori, S., and Huang, X.-Y. (1998) The G protein Gα 12 stimulates Bruton’s tyrosine kinase and rasGAP through a conserved PH/BM domain. Nature 395, 808–813.PubMedCrossRefGoogle Scholar
  83. 83.
    Voyno-Yasenetskaya, T. A., Faure, M. P., Ahn, N. G., and Bourne, H. R. (1996) Gα12 and Gα13 regulate extracellular signal-regulated kinase and c-Jun kinase pathways by different mechanisms in COS-7-cells. J. Biol. Chem. 271, 21,081–21,087.PubMedCrossRefGoogle Scholar
  84. 84.
    Kurose, H. (2003) Gα12 and Gα13 as key regulatory mediater in signal transduction. Life Sci. 74, 155–161.PubMedCrossRefGoogle Scholar
  85. 85.
    Riobo, N. A. and Manning, D. R. (2005) Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol. Sci. 26, 146–154.PubMedCrossRefGoogle Scholar
  86. 86.
    Swords, W. E., Ketterer, M. R., Shao, J., Campbell, C. A., Weiser, J. N., and Apicella, M. A. (2001) Binding of the non-typeable Haemophilus influenzae lipooligosacharide to the PAF receptor initiates host cell signalling. Cell Microbiol. 3, 525–536.PubMedCrossRefGoogle Scholar
  87. 87.
    Sodhi, A., Montaner, S., and Gutkind, J. S. (2004) Viral hijacking of G-protein-coupled-receptor signalling networks. Nature Mol. Cell. Biol. 5, 998–1012.CrossRefGoogle Scholar
  88. 88.
    Arvantakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997) Human herpesvirus KSHV encodes a constitutively active G-proetin-coupled receptor linked to cell proliferation. Nature 385, 347–350.CrossRefGoogle Scholar
  89. 89.
    Yang, T.-Y., Chen, S.-C., Leach, M. W., et al. (2000) Transgenic expression of the chemokine receptor encoded by Human Herpesvirus 8 indices angioproliferative disease resembling Kaposi’s sarcoma. J. Exp. Med. 191, 445–453.PubMedCrossRefGoogle Scholar
  90. 90.
    Beisser, P. S., Verzijl, D., Gruijthuijsen, Y. K., et al. (2005) The Epstein-Barr visrud BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J. Virol. 79, 441–449.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu, R., Paxton, W. A., Choe, S., et al. (1996) Homozygous defect in HIV-1-coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell 86, 367–377.PubMedCrossRefGoogle Scholar
  92. 92.
    Virchow, S., Ansorge, N., Rubben, H., Siffert, G., and Siffert, W. (1998) Enhanced fMLP-stimulated chemotaxis in human neutrophils from individuals carrying the G protein beta3 subunit 825 T-allele. FEBS Lett. 436, 155–158.PubMedCrossRefGoogle Scholar
  93. 93.
    Sarrazin, C., Berg, T., Weich, V., et al. (2005) GNB C825T polymorphism and response to interferon-alfa/ribavirin treatment in patients with hepatitis C virus genotype 1 (HCV-1) infection. J. Hepatol. 43, 388–393.PubMedCrossRefGoogle Scholar
  94. 94.
    Opdal, S., Melien, Ø., Rootwelt, H., Vege, Å., Arnestad, M., and Rognum, T. O. (in press) The G protein α3-subunit 825C allele is associated with sudden infant death due to infection. Aeta PQDae.Google Scholar
  95. 95.
    Harrison, T., Samuel, B. U., Akompong, T., et al. (2003) Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301, 1734–1736.PubMedCrossRefGoogle Scholar
  96. 96.
    Rudolph, U., Finegold, M. J., Rich, S. S., et al. (1995) Ulcerative colitis and adenocarcinoma of the colon in αGi2-deficient mice. Nature Gen. 10, 143–150.CrossRefGoogle Scholar
  97. 97.
    Öhman, L., Franzén, L., Rudolph, U., Harriman, G. R., and Hörnquist Hultgren, E. (2000) Immune activation in the intestinal mucosa before the onset of colitis in Gαi2-deficient mice. Scand. J. Immunol. 52, 80–90.Google Scholar
  98. 98.
    Bjursten, M., Bland, P. W., Willén, R., and Hultgren Hörnquist, E. (2005) Long-term treatment with anti-α4 integrin antibodies aggravates colitis in Gαi2-deficient mice. Eur. J. Immunol. 35, 2274–2283.Google Scholar
  99. 99.
    Lee, H., Chi, L. I., Liao, J.-J., et al. (2004) Lysophospholipids increase ICAM-1 expression in HUVEC through a Gi-and NF-κB-dependent mechanism. Am. J. Physiol. Cell. Physiol. 287, C1657–C1666.PubMedCrossRefGoogle Scholar
  100. 100.
    Skokowa, J., Syed, A. R., Felda, O., et al. (2005) Macrophages induce the inflammatory response in the pulmonary Arthus reaction through Gαi2-activation that controls C5aR and Fc receptor cooperation. J. Immunol. 174, 3041–3050.PubMedGoogle Scholar
  101. 101.
    Girkontainte, I., Karine, M., Sakk, V., et al. (2001) Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nature Immunol. 2, 855–862.CrossRefGoogle Scholar
  102. 102.
    Niculescu, F., Rus, H., van Biesen, T., and Shin, M. L. (1997) Activation of Ras and mitogen-activated proetin kinase pathways by terminal complement compelxes is G protein dependent. J. Immunol. 158, 4405–4412.PubMedGoogle Scholar
  103. 103.
    Lukashev, D., Ohta, A., Apasov, S., Chen, J.-F., and Sitkovsky, M. (2004) Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coipled A2A adenosine receptor in vivo. J. Immunol. 173, 21–24.PubMedGoogle Scholar
  104. 104.
    Marsh, D. J., Baraban, S. C., Hollopeter, G., and Palmiter, R. D. (1999) Role of the Y5 neuropeptide Y receptor in limbic seizures. Proc. Natl. Acad. Sci. 96, 13,518–13,523.PubMedCrossRefGoogle Scholar
  105. 105.
    Mazarati, A. and Lu, X. (2005) Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides 39, 277–280.PubMedCrossRefGoogle Scholar
  106. 106.
    Bowery, N. G., Parry, K., Boehrer, A., Mathivet, P., Marescaux, C., and Bernasconi, R. (1999) Pertussis toxin decreases absence seizures and GABAB receptor binding in thalamus of a genetically prone rat (GAERS). Neuropharmacol. 38, 1691–1697.CrossRefGoogle Scholar
  107. 107.
    Iwasa, H., Kikuchi, S., Miyagishima, H., Mine, S., Koseki, K., and Hasegawa, S. (1999) Altered expression levels of G protein subclass mRNAs in various seizure stages of the kindling model. Brain Res. 818, 570–574.PubMedCrossRefGoogle Scholar
  108. 108.
    Williams, S. F., Colling, S. B., Whittinton, M. A., and Jeffreys, J. G. (1993) Epileptic focus induced by intrahippocampal cholera toxin in rat: time course and properties in vivo and in vitro. Epilepsy Res. 16, 137–146.PubMedCrossRefGoogle Scholar
  109. 109.
    Schwindlinger, W. F., Giger, K. E., Betz, K. S., et al. (2004) Mice with deficiency of G protein γ3 are lean and have seizures. Mol. Cell. Biol. 24, 7758–7768.CrossRefGoogle Scholar
  110. 110.
    Tsang, S. W. Y., Lai, M. K. P., Kirvell, S., et al. (2005) Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol. Aging Epub ahead of print.Google Scholar
  111. 111.
    Wang, H. Y. and Friedman, E. (1994) Receptor-mediated activation of G proteins is reduced in postmortem brains from Alzheimer’s disease patients. Neurosci. Lett. 23, 37–39.CrossRefGoogle Scholar
  112. 112.
    Smine, A., Xu, X., Nishiyama, K., et al. (1998) Regulation of brain G-protein Go by Alzheimer’s disease gene presenilin-1. J. Biol. Chem. 273, 16,281–16,288.PubMedCrossRefGoogle Scholar
  113. 113.
    Offermanns, S., Hashimoto, K., Watanabe, M., et al. (1997) Impaired motor coordination and presistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc. Nat. Acad. Sci. 94, 14,089–14,094.PubMedCrossRefGoogle Scholar
  114. 114.
    Feldmann, R. D. (2002) Deactivation of vasodilator responses by GRK2 overexpression: a mechanism or the mechanism for hypertension? Mol. Pharmacol. 61, 707–709.CrossRefGoogle Scholar
  115. 115.
    Feldman, R. D. (1990) Defective venous beta-adrenergic response in borderline hypertensive subjects is corrected by a low sodium diet. J. Clin. Invest. 85, 647–652.PubMedCrossRefGoogle Scholar
  116. 116.
    Yang, J., Kamide, K., Kokubo, Y., et al. (2005) Genetic variations of regulator of G-protein signaling 2 in hypertensive patients and in the general population. J. Hypertension 23, 1497–1505.CrossRefGoogle Scholar
  117. 117.
    Sun, X., Kaltenbronn, K. M., Steinberg, T. H., and Blumer, K. J. (2005) RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol. Pharmacol. 67, 631–639.PubMedCrossRefGoogle Scholar
  118. 118.
    Baritono, E., Ceolotto, G., Papparella, I., et al. (2003) Abnormal regulation of G protein αi2 subunit in skin fibroblasts from insulin-resistant hypertensive individuals. J. Hypertension 22, 783–792.CrossRefGoogle Scholar
  119. 119.
    Siffert, W. (2005) G protein polymorphisms in hypertension, atherosclerosis, and diabetes. Annu. Rev. Med. 56, 17–28.PubMedCrossRefGoogle Scholar
  120. 120.
    Yamamoto, M., Abe, M., Jin, J. J., et al. (2004) Association of a GNAS1 Gene variant with hypertension and diabetes mellitus. Hypertens. Res. 27, 919–924.PubMedCrossRefGoogle Scholar
  121. 121.
    Knowlton, K. U., Michel, M. C., Itani, M., et al. (1993) The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphological features of cultured myocardial cell hypertrophy. J. Biol. Chem. 268, 15,374–15,380.PubMedGoogle Scholar
  122. 122.
    Adams, J. W., Sakata, Y., Davis, M. G., et al. (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Nat. Acad. Sci. 95, 10,140–10,145.PubMedCrossRefGoogle Scholar
  123. 123.
    Mahmood, M. S., Mian, Z. S., and Afzal, A. (2005) G-protein beta-3-subunit gene 825C>T dimorphism is associated with left ventricular hypertrophy but not essential hypertension. Med. Sci. Monit. 11, CR6–CR9.PubMedGoogle Scholar
  124. 124.
    Hata, J. A., Williams, M. L., and Koch, W. J. (2004) Genetic manipulation of myocardial β-adrenergic receptor activation and desensitization. J. Mol. Cell. Cardiol. 37, 11–21.PubMedCrossRefGoogle Scholar
  125. 125.
    El-Armouche, A., Zolk, O., Rau, T., and Eschenhagen, T. (2003) Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathways in heart failure. Cardiovasc. Res. 60, 478–487.PubMedCrossRefGoogle Scholar
  126. 126.
    Schreieck, J., Dostal, S., von Beckerath, N., et al. (2004) C825T polymorphism of the G-protein β3 subunit gene and atrial fibrillation: association of the TT genotype with a reduced risk for atrial fibrillation. Am. Heart. J. 148, 545–550.PubMedCrossRefGoogle Scholar
  127. 127.
    Dobrev, D., Wettwer, E., Himmel, H. M., et al. (2000) G-protein β3 subunit 825T allele is associated with enhanced human atrial inward rectifier potassium currents. Circulation 102, 692–697.PubMedGoogle Scholar
  128. 128.
    Bauer, A., McDonald, A. D., Nasir, K., et al. (2004) Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation 110, 3115–3120.PubMedCrossRefGoogle Scholar
  129. 129.
    Dhanasekaran, N. and Prasad, M. V. (1998) G protein subunits and cell proliferation. Biol. Signals. Recept. 7, 109–117.PubMedCrossRefGoogle Scholar
  130. 130.
    Christoffersen, T., Thoresen, G. H., Dajani, O. F., et al. (2000) Mechanisms of hepatocyte growth regulation by hormones and growth factors, in The Hepatocyte Review, (Berry M. N., Edwards, A. M. eds.), Kluwer Academic Publishers, Dordrecht/Boston/London pp. 209–246.Google Scholar
  131. 131.
    Marinissen, M. J. and Gutkind, J. S. (2001) G protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22, 368–376.PubMedCrossRefGoogle Scholar
  132. 132.
    Chuprun, J. K., Raymond, J. R., and Blackshear, P. J. (1997) The heterotrimeric G protein Gαi2 mediates lysophosphatidic acid-stimulated induction of the c-fos gene in mouse fibroblasts. J. Biol. Chem. 272, 773–781.PubMedCrossRefGoogle Scholar
  133. 133.
    Harbers, M., Borowski, P., Fanick, W., et al. (1992) Epigenetic activation of Gi-2 protein, the product of a putative protooncogene, mediates tumor promotion in vitro. Carcinogenesis 13, 2403–2406.PubMedCrossRefGoogle Scholar
  134. 134.
    LaMorte, V. J., Goldsmith, P. K., Spiegel, A. M., Meinkoth, J. L., and Feramisco, J. R. (1992) Inhibition of DNA synthesis in living cells by microinjection of Gi2 antibodies. J. Biol. Chem. 267, 691–694.PubMedGoogle Scholar
  135. 135.
    Johnson, G. L., Gardner, A. M., Lange-Carter, C., Qian, N. X., Russell, M., and Winitz, S. (1994) How does the G protein, Gi2, transduce mitogenic signals? J. Cell. Biochem. 54, 415–422.PubMedCrossRefGoogle Scholar
  136. 136.
    McKillop, I. H., Wu, Y., Cahill, P. A., and Sitzmann, J. V. (1998) Altered expression of inhibitory guanine nucleotide regulatory proteins (Gi-proteins) in experimental hepatocellular carcinoma. J. Cell. Physiol. 175, 295–304.PubMedCrossRefGoogle Scholar
  137. 137.
    Gupta, S. K., Gallego, C., Johnson, G. L., and Heasley, L. E. (1992) MAP kinase is constitutively activated in gip2 and Src-transformed Rat 1a fibroblasts. J. Biol. Chem. 267, 7987–7990.PubMedGoogle Scholar
  138. 138.
    Vallar, L. (1996) Oncogenic role of heterotrimeric G proteins. Cancer Surv. 27, 325–338.PubMedGoogle Scholar
  139. 139.
    Edamatsu, H., Kaziro, Y., and Itoh, H. (1998) Expression of an oncogenic mutant Gαi2-activates Ras in Rat-1-fibroblast cells. FEBS Lett. 440, 231–234.PubMedCrossRefGoogle Scholar
  140. 140.
    Dhanasekaran, N., Tsim, S. T., Dermott, J. M., and Onesime, D. (1998) Regulation of cell proliferation by G proteins. Oncogene 17, 1383–1394.PubMedCrossRefGoogle Scholar
  141. 141.
    Ram, P. T., Horvath, C. M., and Iyengar, R. (2000) Stat3-mediated transformation of NIH-3T3-cells by the constitutively active Q205L Gαo protein. Science 287, 142–144.PubMedCrossRefGoogle Scholar
  142. 142.
    Wu, D., Lee, C. H., Rhee, S. G., and Simon, M. I. (1992) Activation of phospholipase C by the α subunits of Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267, 1811–1817.PubMedGoogle Scholar
  143. 143.
    Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3-cells. Mol. Cell. Biol. 12, 4687–4693.PubMedGoogle Scholar
  144. 144.
    McKillop, I. H., Schmidt, C. M., Cahill, P. A., and Sitzmann, J. V. (1999) Altered Gq/G11 guanine nucleotide regulatory protein expression in a rat model of hepatocellular carcinoma: role in mitogenesis. Hepatology 29, 371–378.PubMedCrossRefGoogle Scholar
  145. 145.
    Xu, N., Voyno-Yasenetskaya, T., and Gutkind, J. S. (1994) Potent transforming activity of the G13-alpha subunit defines a novel family of oncogenes. Biochem. Biophys. Res. Commun. 201, 603–609.PubMedCrossRefGoogle Scholar
  146. 146.
    Voyno-Yasenetskaya, T. A., Pace, A. M., and Bourne, H. R. (1994) Mutant α subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559–2565.PubMedGoogle Scholar
  147. 147.
    Dermott, J. M., Reddy, M. V. R., Onesime, D., Reddy, E. P., and Dhanasekaran, N. (1999) Oncogenic mutant of Gα12 stimulates cell proliferation through cycloxygenase-2 signaling pathway. Oncogene 18, 7185–7189.PubMedCrossRefGoogle Scholar
  148. 148.
    Marinissen, M. J., Servitja, J.-M., Offermanns, S., Simon, M. I., and Gutkind, J. S. (2003) Thrombin protease-activated receptor-1 signals through Gq-and G13.-initiated MAPK cascades regulating c-Jun expression to induce cell transformation. J. Biol. Chem. 278, 46,814–46,825.PubMedCrossRefGoogle Scholar
  149. 149.
    Zachary, I., Masters, S. B., and Bourne, H. R. (1990) Increased mitogenic responsiveness of Swiss 3T3-cells expressing constitutively active Gsα. Biochem. Biophys. Res. Commun. 168, 1184–1193.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen, J. and Iyengar, R. (1994) Suppression of Ras-induced transformation of NIH 3T3-cells by activated Gαs. Science 263, 1278–1281.PubMedCrossRefGoogle Scholar
  151. 151.
    Chien, J., Wong, E., Nikes, E., Noble, M. J., Pantazis, C. G., and Shah, G. V. (1999) Constitutive activation of stimulatory guanine nucleotide binding protein (GsαQL)-mediated signaling increases invasiveness and tumorigenicity of PC-3M prostate cancer cells. Oncogene 18, 3376–3382.PubMedCrossRefGoogle Scholar
  152. 152.
    Frey, U. H., Alakhus, H., Wohlschlaeger, J., et al. (2005) GNAS1 T393C polymorphism and survival in patients with sporadic colorectal cancer. Clin. Cancer. Res. 11, 5071–5077.PubMedCrossRefGoogle Scholar
  153. 153.
    Eisenhardt, A., Siffert, W., Rosskopf, D., et al. (2005) Association study of the G-protein beta3 subunit C825T polymorphism with disease progression in patients with bladder cancer. World J. Urol. 25, 1–8.Google Scholar
  154. 154.
    Spiegel, A. M. and Weinstein, L. S. (2004) Inherited disease involving G proteins and G protein-coupled receptors. Annu. Rev. Med. 55, 27–39.PubMedCrossRefGoogle Scholar
  155. 155.
    Lania, A., Mantovani, G., and Spada, A. (2001) G protein mutations in endocrine diseases. Eur. J. Endocrinol. 145, 543–559.PubMedCrossRefGoogle Scholar
  156. 156.
    Dalle, S., Ricketts, W., Imamura, T., Vollenweider, P., and Olefsky, J. M. (2001). Insulin and insulin-like growth factor I receptors utilize different G protein signalling components. J. Biol. Chem. 276, 15,688–15,695.PubMedCrossRefGoogle Scholar
  157. 157.
    Kiani, J. G., Saeed, M., Parvez, S. H., and Frossard, P. M. (2005) Association of G-protein beta-3 subunit gene (GNB3) T825-allele with type II diabetes. Neuro. Endocrinol. Lett. 26, 87–88.PubMedGoogle Scholar
  158. 158.
    Iaccarino, G., Smithwick, L. A., Lefkowitz, R. J., and Koch, W. J. (1999) Targeting Gβγ signalling in arterial vascular smooth muscle proliferation: A novel strategy to limit restenosis. Proc. Nat. Acad. Sci. 96, 3945–3950.PubMedCrossRefGoogle Scholar
  159. 159.
    Emani, S. M., Shah, A. S., Bowman, M. K., et al. (2004). Right ventricular targeted gene transfer of a β-adrenergic receptor kinase inhibitor improves ventricular performance after pulmonary artery banding. J. Thorac. Cardiovasc. Surg. 127, 787–793.PubMedCrossRefGoogle Scholar
  160. 160.
    Robishaw, J. D., Guo, Z. P., and Wang, Q. (2004) Ribozymes as tools for suppression of G protein gamma subunits. Methods. Mol. Biol. 237, 169–180.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Øyvind Melien
    • 1
  1. 1.Clinical Research Unit, Section of Clinical PharmacologyRikshospitalet University HospitalOslo

Personalised recommendations