Skip to main content

Estimation of Folding Probabilities and Φ Values From Molecular Dynamics Simulations of Reversible Peptide Folding

  • Protocol
Protein Folding Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 350))

Abstract

Molecular dynamics simulations with an implicit model of the solvent have allowed to investigate the reversible folding of structured peptides.

For a 20-residue antiparallel β-sheet peptide, the simulation results have revealed multiple folding pathways. Moreover, the conformational heterogeneity of the denatured state has been shown to originate from high enthalpy, high entropy basins with fluctuating non-native secondary structure, as well as low enthalpy, low entropy traps. An efficient and simple approach to estimate folding probabilities from molecular dynamics simulations has allowed to isolate conformations in the transition state ensemble and to evaluate Φ values, i.e., the effects of mutations on the folding kinetics and thermodynamic stability. These molecular dynamics studies have provided evidence that, if interpreted by neglecting the non-native interactions, Φ values overestimate the amount of native-like structure in the transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *

    In contrast with the astronomical amount of time needed by a random search in the configuration space of the protein (Levinthal’s paradox).

References

  1. Abkevich, V., Gutin, A., and Shakhnovich, E. (1994) Free-energy landscape for protein-folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101, 6052–6062.

    Article  CAS  Google Scholar 

  2. Dill, K. and Chan, H. (1997) From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19.

    Article  CAS  PubMed  Google Scholar 

  3. Frauenfelder, H., Sligar, S., and Wolynes, P. (1991) The energy landscapes and motions of proteins. Science 254, 1598–1603.

    Article  CAS  PubMed  Google Scholar 

  4. Saven, J., Wang, J., and Wolynes, P. (1994) Kinetics of protein-folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys. 101, 11037–11043.

    Article  CAS  Google Scholar 

  5. Wang, J., Onuchic, J., and Wolynes, P. G. (1996) Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys. Rev. Lett. 76, 4861–4864.

    Article  CAS  PubMed  Google Scholar 

  6. Daggett, V. and Fersht, A. (2003) Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25.

    Article  CAS  PubMed  Google Scholar 

  7. Leopold, P. E., Montal, M., and Onuchic, J. N. (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. USA 89, 8721–8725.

    Article  CAS  PubMed  Google Scholar 

  8. Karplus, M. (1997) The Levinthal paradox: yesterday and today. Fold. Des. 2, S69–S75.

    Article  CAS  PubMed  Google Scholar 

  9. Fersht, A. R. (1999) Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Protein Folding, W. H. Freeman, New York, NY.

    Google Scholar 

  10. Fersht, A. R., Matouschek, A., and Serrano, L. (1992) The folding of an enzyme. 1. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782.

    Article  CAS  PubMed  Google Scholar 

  11. Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., and Karplus, M. (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  12. Karplus, M. and Kuriyan, J. (2005) Chemical theory and computation special feature: molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102, 6679–6685.

    Article  CAS  PubMed  Google Scholar 

  13. McCammon, J. A., Gelin, B. R., and Karplus, M. (1977) Dynamics of folded proteins. Nature 267, 585–590.

    Article  CAS  PubMed  Google Scholar 

  14. Du, R., Pande, V., Grosberg, A., Tanaka, T., and Shakhnovich, E. (1998) On the transition coordinate for protein folding. J. Chem. Phys. 108, 334–350.

    Article  CAS  Google Scholar 

  15. Gsponer, J. and Caflisch, A. (2002) Molecular dynamics simulations of protein folding from the transition state. Proc. Natl. Acad. Sci. USA 99, 6719–6724.

    Article  CAS  PubMed  Google Scholar 

  16. Hubner, I. A., Shimada, J., and Shakhnovich, E. I. (2004) Commitment and nucleation in the protein G transition state. J. Mol. Biol. 336, 745–761.

    Article  CAS  PubMed  Google Scholar 

  17. Lenz, P., Zagrovic, B., Shapiro, J., and Pande, V. S. (2004) Folding probabilities: a novel approach to folding transitions and the two-dimensional Ising-model. J. Chem. Phys. 120, 6769–6778.

    Article  CAS  PubMed  Google Scholar 

  18. Li, L. and Shakhnovich, E. I. (2001) Constructing, verifying, and dissecting the folding transition state of chymotrypsin inhibitor 2 with all-atom simulations. Proc. Natl. Acad. Sci. USA 98, 13014–13018.

    Article  CAS  PubMed  Google Scholar 

  19. Rao, F. and Caflisch, A. (2004) The protein folding network. J. Mol. Biol. 342, 299–306.

    Article  CAS  PubMed  Google Scholar 

  20. De Alba, E., Santoro, J., Rico, M., and Jimenez, M. (1999) De novo design of a monomeric three-stranded antiparallel beta-sheet. Protein Sci. 8, 854–865.

    Article  PubMed  Google Scholar 

  21. Ferrara, P. and Caflisch, A. (2000) Folding simulations of a three-stranded antiparallel beta-sheet peptide. Proc. Natl. Acad. Sci. USA 97, 10780–10785.

    Article  CAS  PubMed  Google Scholar 

  22. Ferrara, P., Apostolakis, J., and Caflisch, A. (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46, 24–33.

    Article  CAS  PubMed  Google Scholar 

  23. Cavalli, A., Haberthur, U., Paci, E., and Caflisch, A. (2003) Fast protein folding on downhill energy landscape. Protein Sci. 12, 1801–1803.

    Article  CAS  PubMed  Google Scholar 

  24. Hartigan, J. (1975) Clustering Algorithms, Wiley, New York, NY.

    Google Scholar 

  25. Rao, F., Settanni, G., Guarnera, E., and Caflisch, A. (2005) Estimation of protein folding probability from equilibrium simulations. J. Chem. Phys. 122, 184901.

    Article  PubMed  Google Scholar 

  26. Chan, H. S. and Dill, K. A. (1998) Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins 30, 2–33.

    Article  CAS  PubMed  Google Scholar 

  27. Pande, V., Grosberg, A., Tanaka, T., and Rokhsar, D. (1998) Pathways for protein folding: is a new view needed? Curr. Opin. S1truct. Biol. 8, 68–79.

    Article  CAS  Google Scholar 

  28. Krivov, S. and Karplus, M. (2004) Hidden complexity of free energy surfaces for peptide (protein) folding. Proc. Natl. Acad. Sci. USA 101, 14766–14770.

    Article  CAS  PubMed  Google Scholar 

  29. Settanni, G., Rao, F., and Caflisch, A. (2005) Value analysis by molecular dynamics simulations of reversible folding. Proc. Natl. Acad. Sci. USA 102, 628–633.

    Article  CAS  PubMed  Google Scholar 

  30. Best, R. and Hummer, G. (2005) Reaction coordinates and rates from transition paths. Proc. Natl. Acad. Sci. USA 102, 6732–6737.

    Article  CAS  PubMed  Google Scholar 

  31. Chandler, D. (1978) Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68, 2959–2970.

    Article  CAS  Google Scholar 

  32. Northrup, S. H., Pear, M. R., Lee, C. Y., McCammon, J. A., and Karplus, M. (1982) Dynamical theory of activated processes in globular proteins. Proc. Natl. Acad. Sci. USA 79, 4035–4039.

    Article  CAS  PubMed  Google Scholar 

  33. Fersht, A. R. and Sato, S. (2004) Value analysis and the nature of protein-folding transition states. Proc. Natl. Acad. Sci. USA 101, 7976–7981.

    Article  CAS  PubMed  Google Scholar 

  34. Cavalli, A., Ferrara, P., and Caflisch, A. (2002) Weak temperature dependence of the free energy surface and folding pathways of structured peptides. Proteins 47, 305–314.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez, I. E. and Kiefhaber, T. (2003) Origin of unusual values in protein folding: evidence against specific nucleation sites. J. Mol. Biol. 334, 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  36. Fersht, A. R. (2004) Relationship of Leffler (Bronsted) values and protein folding values to positions of transition-state structures on reaction coordinates. Proc. Natl. Acad. Sci. USA 101, 14338–14342.

    Article  CAS  PubMed  Google Scholar 

  37. Baldwin, R. L. and Rose, G. D. (1999) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77–83.

    Article  CAS  PubMed  Google Scholar 

  38. Karplus, M. and Weaver, D. L. (1976) Protein folding dynamics. Nature 260, 404–406.

    Article  CAS  PubMed  Google Scholar 

  39. Daggett, V., Li, A. J., Itzhaki, L. S., Otzen, D. E., and Fersht, A. R. (1996) Structure of the transition state for folding of a protein derived from experiment and simulation. J. Mol. Biol. 257, 430–440.

    Article  CAS  PubMed  Google Scholar 

  40. Itzhaki, L. S., Otzen, D. E., and Fersht, A. R. (1995) The structure of the transitionstate for folding of chymotrypsin inhibitor-2 analyzed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein-folding. J. Mol. Biol. 254, 260–288.

    Article  CAS  PubMed  Google Scholar 

  41. Li, A. J. and Daggett, V. (1996) Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J. Mol. Biol. 257, 412–429.

    Article  CAS  PubMed  Google Scholar 

  42. Settanni, G., Gsponer, J., and Caflisch, A. (2004) Formation of the folding nucleus of an H3 domain investigated by loosely coupled molecular dynamics simulations. Biophys. J. 86, 1691–1701.

    Article  CAS  PubMed  Google Scholar 

  43. Vendruscolo, M., Paci, E., Dobson, C. M., and Karplus, M. (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409, 641–645.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Rao, F., Settanni, G., Caflisch, A. (2007). Estimation of Folding Probabilities and Φ Values From Molecular Dynamics Simulations of Reversible Peptide Folding. In: Bai, Y., Nussinov, R. (eds) Protein Folding Protocols. Methods in Molecular Biology™, vol 350. Humana Press. https://doi.org/10.1385/1-59745-189-4:225

Download citation

  • DOI: https://doi.org/10.1385/1-59745-189-4:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-622-1

  • Online ISBN: 978-1-59745-189-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics