Skip to main content

M13 Bacteriophage Coat Proteins Engineered for Improved Phage Display

  • Protocol
Protein Engineering Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 352))

Abstract

This chapter describes a method for increasing levels of protein fusions displayed on the surfaces of M13 bacteriophage particles. By introducing mutations into the anchoring M13 coat protein, protein display levels can be increased by up to two orders of magnitude. Experimental methods are presented for the design, construction, and screening of phage-displayed libraries for improved protein display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G. P. and Petrenko, V. A. (1997) Phage display. Chem. Rev. 97, 391–410.

    Article  PubMed  CAS  Google Scholar 

  2. Sidhu, S. S., Lowman, H. B., Cunningham, B. C., and Wells, J. A. (2000) Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363.

    Article  PubMed  CAS  Google Scholar 

  3. Sidhu, S. S. (2000) Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11, 610–616.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  5. Bass, S., Greene, R., and Wells, J. A. (1990) Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8, 309–314.

    Article  PubMed  CAS  Google Scholar 

  6. Malik, P., Terry, T. D., Gowda, L. R., et al. (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J. Mol. Biol. 260, 9–21.

    Article  PubMed  CAS  Google Scholar 

  7. Iannolo, G., Minenkova, O., Petruzzelli, R., and Cesareni, G. (1995) Modifying filamentous phage capsid: limits in the size of the major capsid protein. J. Mol. Biol. 248, 835–844.

    Article  PubMed  CAS  Google Scholar 

  8. Kretzschmar, T. and Geiser, M. (1995) Evaluation of antibodies fused to minor coat protein III and major coat protein VIII in bacteriophage M13. Gene 155, 61–65.

    Article  PubMed  CAS  Google Scholar 

  9. Clackson, T. and Wells, J. A. (1994) In vitro selection from protein and peptide libraries. Trends Biotechnol. 12, 173–184.

    Article  PubMed  CAS  Google Scholar 

  10. Weiss, G. A., Wells, J. A., and Sidhu, S. S. (2000) Mutational analysis of the major coat protein of M13 identifies residues that control protein display. Protein Sci. 9, 647–654.

    Article  PubMed  CAS  Google Scholar 

  11. Sidhu, S. S., Weiss, G. A., and Wells, J. A. (2000) High copy display of large proteins on phage for functional selections. J. Mol. Biol. 296, 487–495.

    Article  PubMed  CAS  Google Scholar 

  12. Roth, T. A., Weiss, G. A., Eigenbrot, C., and Sidhu, S. S. (2002) A minimized M13 coat protein defines the minimum requirements for assembly into the bacteriophage particle. J. Mol. Biol. 322, 357–367.

    Article  PubMed  CAS  Google Scholar 

  13. Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382.

    Article  PubMed  CAS  Google Scholar 

  14. Lechner, R. L., Engler, M. J., and Richardson, C. C. (1983) Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J. Biol. Chem. 258, 1174–1184.

    Google Scholar 

  15. Miller, J. H. (1972) Experiments in Molecular Biology 1st ed., Cold SpringHarbor Laboratory Press, Cold Spring Harbor, NY, p. 190.

    Google Scholar 

  16. Fuh, G., Mulkerrin, M. G., Bass, S., et al. (1990) The human growth hormone receptor: secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domain. J. Biol. Chem. 265, 3111–3115.

    PubMed  CAS  Google Scholar 

  17. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28, 33-38.

    Article  Google Scholar 

  18. Esnouf, R. M. (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 112–113, 132-134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Sidhu, S.S., Feld, B.K., Weiss, G.A. (2007). M13 Bacteriophage Coat Proteins Engineered for Improved Phage Display. In: Arndt, K.M., Müller, K.M. (eds) Protein Engineering Protocols. Methods in Molecular Biology™, vol 352. Humana Press. https://doi.org/10.1385/1-59745-187-8:205

Download citation

  • DOI: https://doi.org/10.1385/1-59745-187-8:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-072-4

  • Online ISBN: 978-1-59745-187-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics