Skip to main content

Protein Design by Binary Patterning of Polar and Nonpolar Amino Acids

  • Protocol
Protein Engineering Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 352))

Abstract

The design of large libraries of well-folded de novo proteins is a powerful approach toward the ultimate goal of producing proteins with novel structures and functions for use in industry or medicine. A method for library design that incorporates both rational design and combinatorial diversity relies on the “binary patterning” of polar and nonpolar amino acids. Binary patterning is based on the premise that the appropriate arrangement of polar and nonpolar residues can direct a polypeptide chain to fold into amphipathic elements of secondary structure that anneal together to form a desired tertiary structure. A designed binary pattern exploits the periodicities inherent in protein secondary structure, and allows the identity of the side chain at each polar and nonpolar position to be varied combinatorially. This chapter provides an overview of the considerations necessary to use binary patterning to design libraries of novel proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, W. A. and Sauer, R. T. (1989) Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature 339, 31–36.

    Article  PubMed  CAS  Google Scholar 

  2. Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., and Sauer, R. T. (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247, 1306–1310.

    Article  PubMed  CAS  Google Scholar 

  3. Axe, D. D., Foster, N. W., and Fersht, A. R. (1996) Active barnase variants with completely random hydrophobic cores. Proc. Natl. Acad. Sci. USA 93, 5590–5594.

    Article  PubMed  CAS  Google Scholar 

  4. Gassner, N. C., Baase, W. A., and Matthews, B. W. (1996) A test of the “jigsaw puzzle” model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc. Natl. Acad. Sci. USA 93, 12,155–12,158.

    Article  PubMed  CAS  Google Scholar 

  5. Riddle, D. S., Santiago, J. V., Bray-Hall, S. T., et al. (1997) Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4, 805–809.

    Article  PubMed  CAS  Google Scholar 

  6. Silverman, J. A., Balakrishnan, R., and Harbury, P. B. (2001) Reverse engineering the (β/α)8 barrel fold. Proc. Natl. Acad. Sci. USA 98, 3092–3097.

    Article  PubMed  CAS  Google Scholar 

  7. Lau, K. F. and Dill, K. A. (1990) Theory for protein mutability and biogenesis. Proc. Natl. Acad. Sci. USA 87, 638–642.

    Article  PubMed  CAS  Google Scholar 

  8. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  9. West, M. W., Wang, W., Patterson, J., Mancias, J. D., Beasley, J. R., and Hecht, M. H. (1999) De novo amyloid proteins from designed combinatorial libraries. Proc. Natl. Acad. Sci. USA 96, 11,211–11,216.

    Article  PubMed  CAS  Google Scholar 

  10. Xiong, H., Buckwalter, B. L., Shieh, H. M., and Hecht, M. H. (1995) Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl. Acad. Sci. USA 92, 6349–6353.

    Article  PubMed  CAS  Google Scholar 

  11. Moffet, D. A. and Hecht, M. H. (2001) De novo proteins from combinatorial libraries. Chem. Rev. 101, 3191–3203.

    Article  PubMed  CAS  Google Scholar 

  12. Hecht, M. H., Das, A., Go, A., Bradley, L. H., and Wei, Y. (2004) De novo proteins from designed combinatorial libraries. Protein Sci. 13, 1711–1723.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor, S. V., Walter, K. U., Kast, P., and Hilvert, D. (2001) Searching sequence space for protein catalysts. Proc. Natl. Acad. Sci. USA 98, 10,596–10,601.

    Article  PubMed  CAS  Google Scholar 

  14. Roy, S., Ratnaswamy, G., Boice, J. A., Fairman, F., McLendon, G., and Hecht, M. H. (1997) A protein designed by binary patterning of polar and nonpolar amino acids displays native-like properties. J. Am. Chem. Soc. 119, 5302–5306.

    Article  CAS  Google Scholar 

  15. Roy, S., Helmer, K. J., and Hecht, M. H. (1997) Detecting native-like properties in combinatorial libraries of de novo proteins. Folding Des. 2, 89–92.

    Article  CAS  Google Scholar 

  16. Roy, S. and Hecht, M. H. (2000) Cooperative thermal denaturation of proteins designed by binary patterning of polar and nonpolar amino acids. Biochemistry 39, 4603–4607.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenbaum, D. M., Roy, S., and Hecht, M. H. (1999) Screening combinatorial libraries of de novo proteins by hydrogen-deuterium exchange and electrospray mass spectrometry. J. Am. Chem. Soc. 121, 9509–9513.

    Article  CAS  Google Scholar 

  18. Wei, Y., Liu, T. I. P., Sazinsky, S. L., Moffet, D. A., and Hecht, M. H. (2003) Well folded de novo proteins from a designed combinatorial library. Protein Sci. 12, 92–102.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, G., Wang, W., Groves, J. T., and Hecht, M. H. (2001) Self-assembled monolayers from a designed combinatorial library of de novo β-sheet proteins. Proc. Natl. Acad. Sci. USA 98, 3652–3657.

    Article  PubMed  CAS  Google Scholar 

  20. Brown, C. L., Aksay, I. A., Saville, D. A., and Hecht, M. H. (2002) Template-directed assembly of a de novo designed protein. J. Am. Chem. Soc. 124, 6846–6848.

    Article  PubMed  CAS  Google Scholar 

  21. Richardson, J. S. and Richardson, D. C. (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  22. Hutchinson, E. G. and Thornton, J. M. (1994) A revised set of potentials for β-turn formation in proteins. Protein Sci. 3, 2207–2216.

    Article  PubMed  CAS  Google Scholar 

  23. Hirel, P. H., Schmitter, M. J., Dessen, P., Fayat, G., and Blanquet, S. (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86, 8247–8251.

    Article  PubMed  CAS  Google Scholar 

  24. Dalboge, H., Bayne, S., and Pedersen, J. (1990) In vivo processing of N-terminal methionine in E. coli. FEBS Lett. 266, 1–3.

    Article  PubMed  CAS  Google Scholar 

  25. Tsunasawa, S., Stewart, J. W., and Sherman, F. (1985) Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J. Biol. Chem. 260, 5382–5391.

    PubMed  CAS  Google Scholar 

  26. Huang, S., Elliott, R. C., Liu, P. S., et al. (1987) Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 26, 8242–8246.

    Article  PubMed  CAS  Google Scholar 

  27. Bowie, J. U. and Sauer, R. T. (1989) Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J. Biol. Chem. 264, 7596–7602.

    PubMed  CAS  Google Scholar 

  28. Parsell, D. A., Silber, K. R., and Sauer, R. T. (1990) Carboxy-terminal determinants of intracellular protein degradation. Genes Dev. 4, 277–286.

    Article  PubMed  CAS  Google Scholar 

  29. Milla, M. E., Brown, B. M., and Sauer, R. T. (1993) P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. Protein Sci. 2, 2198–2205.

    Article  PubMed  CAS  Google Scholar 

  30. Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L. (1987) Tests of the helix dipole model for stabilization of alpha-helices. Nature 326, 563–567.

    Article  PubMed  CAS  Google Scholar 

  31. Wei, Y., Kim, S., Fela, D., and Hecht, M. H. (2003) Solution structure of a de novo protein from a designed combinatorial library. Proc. Natl. Acad. Sci. USA 100, 13,270–13,273.

    Article  PubMed  CAS  Google Scholar 

  32. Chou, P. Y. and Fasman, G. D. (1978) Empirical predictions of protein conformation. Annu. Rev. Biochem. 47, 251–276.

    Article  PubMed  CAS  Google Scholar 

  33. Fasman, G. D. (1989) Prediction of Protein Structure and the Principles of Protein Conformation. Plenum, New York, NY.

    Google Scholar 

  34. Creighton, T. E. (1993) Proteins: Structures and Molecular Properties. 2nd ed., Freeman, New York, NY.

    Google Scholar 

  35. Pace, C. N. and Scholtz, J. M. (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75, 422–427.

    Article  PubMed  CAS  Google Scholar 

  36. DeBoer, H. A. and Kastelein, R. A. (1986) in Maximizing Gene Expression (Rezinikoff, W. and Gold, L., eds.), Butterworth, Stoneham, MA, pp. 225–285.

    Google Scholar 

  37. Kane, J. F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 494–500.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Bradley, L.H., Wei, Y., Thumfort, P., Wurth, C., Hecht, M.H. (2007). Protein Design by Binary Patterning of Polar and Nonpolar Amino Acids. In: Arndt, K.M., Müller, K.M. (eds) Protein Engineering Protocols. Methods in Molecular Biology™, vol 352. Humana Press. https://doi.org/10.1385/1-59745-187-8:155

Download citation

  • DOI: https://doi.org/10.1385/1-59745-187-8:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-072-4

  • Online ISBN: 978-1-59745-187-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics