Skip to main content

Protein Library Design and Screening

Working Out the Probabilities

  • Protocol
Book cover Protein Engineering Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 352))

Abstract

In designing protein libraries for selection, we must coordinate our capacity to create a large diversity of protein variants with the physical limitations of what we can actually screen. This chapter aims to bring the language of probabilities into the protein engineer’s laboratory to answer some of our common questions: How can we most efficiently design a library? What fraction of the theoretical library diversity have we actually sampled at the end of the day? What is the probability of missing an individual of the library? Are the mutations present in the variants we have selected statistically meaningful or the product of random variation? The computation of these criteria throughout the process of experimental protein engineering will enable us to better design and evaluate the products of our libraries of protein variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, F. H. and Georgiou, G. (2003) Directed Evolution Library Creation Methods and Protocols. Methods in Molecular Biology 231, Humana Press, Totowa, NJ.

    Book  Google Scholar 

  2. Arnold, F. H. and Georgiou, G. (2003) Directed Enzyme Evolution Screening and Selection Methods. Methods in Molecular Biology 230, Humana Press, Totowa, NJ.

    Google Scholar 

  3. Moore, J. C., Jin, H. M., Kuchner, O., and Arnold, F. H. (1997) Strategies for the in vitro evolution of protein function—enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272, 336–347.

    Article  PubMed  CAS  Google Scholar 

  4. Moore, G. L. and Maranas, C. D. (2000) Modeling DNA mutation and recombination for directed evolution experiments. J. Theor. Biol. 205, 483–503.

    Article  PubMed  CAS  Google Scholar 

  5. Moore, G. L., Maranas, C. D., Lutz, S., and Benkovic, S. J. (2001) Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA 98, 3226–3231.

    Article  PubMed  CAS  Google Scholar 

  6. Moore, G. L. and Maranas, C. D. (2002) Predicting out-of-sequence reassembly in DNA shuffling. J. Theor. Biol. 219, 9–17.

    PubMed  CAS  Google Scholar 

  7. Sun, F. (1999) Modeling DNA shuffling. J. Comput. Biol. 6, 77–90.

    Article  PubMed  CAS  Google Scholar 

  8. Patrick, W. M., Firth, A. E., and Blackburn, J. M. (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16, 451–457.

    Article  PubMed  CAS  Google Scholar 

  9. Bittker, J. A., Le, B. V., Liu, J. M., and Liu, D. R. (2004) Directed evolution of protein enzymes using nonhomologous random recombination. Proc. Natl. Acad. Sci. USA 101, 7011–7016.

    Article  PubMed  CAS  Google Scholar 

  10. Gribskov, M., Devereux, J., and Burgess, R. R. (1984) The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 12, 539–549.

    Article  PubMed  CAS  Google Scholar 

  11. Virnekas, B., Ge, L., Plückthun, A., Schneider, K. C., Wellnhofer, G., and Moroney, S. E. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607.

    Article  PubMed  CAS  Google Scholar 

  12. Pelletier, J. N., Arndt, K. M., Plückthun, A., and Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein-protein interactions. Nature Biotechnol. 17, 683–690.

    Article  CAS  Google Scholar 

  13. Braunagel, M. and Little, M. (1997) Construction of a semisynthetic antibody library using trinucleotide oligos. Nucleic Acids Res. 25, 4690, 4691.

    Article  PubMed  CAS  Google Scholar 

  14. Gaytan, P., Yanez, J., Sanchez, F., and Soberon, X. (2001) Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols. Nucleic Acids Res. 29, E9.

    Article  PubMed  CAS  Google Scholar 

  15. Ross, S. M. (1996) Stochastic Processes. 2nd ed., John Wiley & Sons, New York, NY.

    Google Scholar 

  16. Hogg, R. V. and Tanis, E. A. (1983) Probability and Statistical Inference. 2nd ed., MacMillan, New York, NY.

    Google Scholar 

  17. Ross, S. M. (1998) A First Course in Probability. 5th ed., Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Denault, M., Pelletier, J.N. (2007). Protein Library Design and Screening. In: Arndt, K.M., Müller, K.M. (eds) Protein Engineering Protocols. Methods in Molecular Biology™, vol 352. Humana Press. https://doi.org/10.1385/1-59745-187-8:127

Download citation

  • DOI: https://doi.org/10.1385/1-59745-187-8:127

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-072-4

  • Online ISBN: 978-1-59745-187-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics