Considerations in the Design and Optimization of Coiled Coil Structures

  • Jody M. Mason
  • Kristian M. Müller
  • Katja M. Arndt
Part of the Methods in Molecular Biology™ book series (MIMB, volume 352)


Coiled coil motifs are, despite their apparent simplicity, highly specific, and play a significant role in the understanding of tertiary structure and its formation. The most commonly observed of the coiled coils, the parallel dimeric, is yet to be fully characterized for this structural class in general. Nonetheless, strict rules have emerged for the necessity of specific types of amino acids at specific positions. In this chapter, we discuss this system in light of existing coiled coil structures and in applying rules to coiled coils that are to be designed or optimized. Understanding and expanding on these rules is crucial in using these motifs, which play key roles in virtually every cellular process, to act as drug-delivery agents by sequestering other proteins that are not behaving natively or that have been upregulated (for example, by binding to coiled coil domains implicated in oncogenesis). The roles of the a and d “hydrophobic” core positions and the e and g “electrostatic” edge positions in directing oligomerization and pairing specificity are discussed. Also discussed is the role of these positions in concert with the b, c, and f positions in maintaining α-helical propensity, helix solubility, and dimer stability.

Key Words

Coiled coil helix heptad repeat in vivo selection leucine zipper library design protein design protein engineering protein fragment complementation assay protein stability rational design 


  1. 1.
    Wolf, E., Kim, P. S., and Berger, B. (1997) MultiCoil: a program for predicting two-and three-stranded coiled coils. Protein Sci. 6, 1179–1189.PubMedCrossRefGoogle Scholar
  2. 2.
    Lupas, A. (1996) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382.PubMedGoogle Scholar
  3. 3.
    Landschulz, W. H., Johnson, P. F., and McKnight, S. L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.PubMedCrossRefGoogle Scholar
  4. 4.
    Burkhard, P., Stetefeld, J., and Strelkov, S. V. (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Kohn, W. D., Mant, C. T., and Hodges, R. S. (1997) Alpha-helical protein assembly motifs. J. Biol. Chem. 272, 2583–2586.PubMedCrossRefGoogle Scholar
  6. 6.
    O’shea, E. K., Klemm, J. D., Kim, P. S., and Alber, T. (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544.CrossRefGoogle Scholar
  7. 7.
    DeLano, W. L. (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA; Scholar
  8. 8.
    Arndt, K. M., Pelletier, J. N., Müller, K. M., Plückthun, A., and Alber, T. (2002) Comparison of in vivo selection and rational design of heterodimeric coiled coils. Structure 10, 1235–1248.PubMedCrossRefGoogle Scholar
  9. 9.
    O’shea, E. K., Lumb, K. J., and Kim, P. S. (1993) Peptide ‘Velcro’: design of a heterodimeric coiled coil. Curr. Biol. 3, 658–667.CrossRefGoogle Scholar
  10. 10.
    Mason, J. M. and Arndt, K. M. (2004) Coiled coil domains: stability, specificity, and biological implications. Chem. Biochem. 5, 170–176.Google Scholar
  11. 11.
    Müller, K. M., Arndt, K. M., and Alber, T. (2000) Protein fusions to coiled-coil domains. Methods Enzymol. 328, 261–282.PubMedCrossRefGoogle Scholar
  12. 12.
    Arndt, K. M., Müller, K. M., and Plückthun, A. (2001) Helix-stabilized Fv (hsFv) antibody fragments: substituting the constant domains of a Fab fragment for a heterodimeric coiled-coil domain. J. Mol. Biol. 312, 221–228.PubMedCrossRefGoogle Scholar
  13. 13.
    Pack, P., Müller, K. M., Zahn, R., and Plückthun, A. (1995) Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J. Mol. Biol. 246, 28–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Naik, R. R., Kirkpatrick, S. M., and Stone, M. O. (2001) The thermostability of an alpha-helical coiled-coil protein and its potential use in sensor applications. Biosens. Bioelectron. 16, 1051–1057.PubMedCrossRefGoogle Scholar
  15. 15.
    Crick, F. H. S. (1953) The packing of α-helices: simple Coiled Coils. Acta Crystallogr. 6, 689–697.CrossRefGoogle Scholar
  16. 16.
    Harbury, P. B., Zhang, T., Kim, P. S., and Alber, T. (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407.PubMedCrossRefGoogle Scholar
  17. 17.
    Harbury, P. B., Kim, P. S., and Alber, T. (1994) Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Betz, S. F., Bryson, J. W., and DeGrado, W. F. (1995) Native-like and structurally characterized designed alpha-helical bundles. Curr. Opin. Struct. Biol. 5, 457–463.PubMedCrossRefGoogle Scholar
  19. 19.
    Woolfson, D. N. and Alber, T. (1995) Predicting oligomerization states of coiled coils. Protein Sci. 4, 1596–1607.PubMedCrossRefGoogle Scholar
  20. 20.
    Monera, O. D., Sonnichsen, F. D., Hicks, L., Kay, C. M., and Hodges, R. S. (1996) The relative positions of alanine residues in the hydrophobic core control the formation of two-stranded or four-stranded alpha-helical coiled-coils. Protein Eng. 9, 353–363.PubMedCrossRefGoogle Scholar
  21. 21.
    Malashkevich, V. N., Kammerer, R. A., Efimov, V. P., Schulthess, T., and Engel, J. (1996) The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel? Science 274, 761–765.PubMedCrossRefGoogle Scholar
  22. 22.
    Tang, Y. and Tirrell, D. A. (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J. Am. Chem. Soc. 123, 11,089–11,090.PubMedCrossRefGoogle Scholar
  23. 23.
    Tang, Y., Ghirlanda, G., Petka, W. A., Nakajima, T., DeGrado, W. F., and Tirrell, D. A. (2001) Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew. Chem. Int. Ed. 40, 1494–1496.CrossRefGoogle Scholar
  24. 24.
    Kretsinger, J. K. and Schneider, J. P. (2003) Design and application of basic amino acids displaying enhanced hydrophobicity. J. Am. Chem. Soc. 125, 7907–7913.PubMedCrossRefGoogle Scholar
  25. 25.
    Akey, D. L., Malashkevich, V. N., and Kim, P. S. (2001) Buried polar residues in coiled-coil interfaces. Biochemistry 40, 6352–6360.PubMedCrossRefGoogle Scholar
  26. 26.
    Glover, J. N. and Harrison, S. C. (1995) Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373, 257–261.PubMedCrossRefGoogle Scholar
  27. 27.
    Gonzalez, L., Jr., Woolfson, D. N., and Alber, T. (1996) Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat. Struct. Biol. 3, 1011–1018.PubMedCrossRefGoogle Scholar
  28. 28.
    Junius, F. K., Mackay, J. P., Bubb, W. A., Jensen, S. A., Weiss, A. S., and King, G. F. (1995) Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues. Biochemistry 34, 6164–6174.PubMedCrossRefGoogle Scholar
  29. 29.
    Potekhin, S. A., Medvedkin, V. N., Kashparov, I. A., and Venyaminov, S. (1994) Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 from yeast. Protein Eng. 7, 1097–1101.PubMedCrossRefGoogle Scholar
  30. 30.
    Lumb, K. J. and Kim, P. S. (1995) A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 34, 8642–8648.PubMedCrossRefGoogle Scholar
  31. 31.
    Arndt, K. M., Pelletier, J. N., Müller, K. M., Alber, T., Michnick, S. W., and Plückthun, A. (2000) A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J. Mol. Biol. 295, 627–639.PubMedCrossRefGoogle Scholar
  32. 32.
    Tripet, B., Wagschal, K., Lavigne, P., Mant, C. T., and Hodges, R. S. (2000) Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position “d”. J. Mol. Biol. 300, 377–402.PubMedCrossRefGoogle Scholar
  33. 33.
    Wagschal, K., Tripet, B., Lavigne, P., Mant, C., and Hodges, R. S. (1999) The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci. 8, 2312–2329.PubMedCrossRefGoogle Scholar
  34. 34.
    Ji, H., Bracken, C., and Lu, M. (2000) Buried polar interactions and conformational stability in the simian immunodeficiency virus (SIV) gp41 core. Biochemistry 39, 676–685.PubMedCrossRefGoogle Scholar
  35. 35.
    Fairman, R., Chao, H. G., Lavoie, T. B., Villafranca, J. J., Matsueda, G. R., and Novotny, J. (1996) Design of heterotetrameric coiled coils: evidence for increased stabilization by Glu(−)-Lys(+) ion pair interactions. Biochemistry 35, 2824–2829.PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma, V. A., Logan, J., King, D. S., White, R., and Alber, T. (1998) Sequence-based design of a peptide probe for the APC tumor suppressor protein. Curr. Biol. 8, 823–830.PubMedCrossRefGoogle Scholar
  37. 37.
    Schnarr, N. A. and Kennan, A. J. (2002) Peptide tic-tac-toe: heterotrimeric coiled-coil specificity from steric matching of multiple hydrophobic side chains. J. Am. Chem. Soc. 124, 9779–9783.PubMedCrossRefGoogle Scholar
  38. 38.
    Campbell, K. M. and Lumb, K. J. (2002) Complementation of buried lysine and surface polar residues in a designed heterodimeric coiled coil. Biochemistry 41, 7169–7175.PubMedCrossRefGoogle Scholar
  39. 39.
    Havranek, J. J. and Harbury, P. B. (2003) Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Kohn, W. D., Kay, C. M., and Hodges, R. S. (1995) Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. Protein Sci. 4, 237–250.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou, N. E., Kay, C. M., and Hodges, R. S. (1994) The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability. Protein Eng. 7, 1365–1372.PubMedCrossRefGoogle Scholar
  42. 42.
    Graddis, T. J., Myszka, D. G., and Chaiken, I. M. (1993) Controlled formation of model homo-and heterodimer coiled coil polypeptides. Biochemistry 32, 12,664–12,671.PubMedCrossRefGoogle Scholar
  43. 43.
    Moll, J. R., Olive, M., and Vinson, C. (2000) Attractive interhelical electrostatic interactions in the proline-and acidic-rich region (PAR) leucine zipper subfamily preclude heterodimerization with other basic leucine zipper subfamilies. J. Biol. Chem. 275, 34,826–34,832.PubMedCrossRefGoogle Scholar
  44. 44.
    Krylov, D., Mikhailenko, I., and Vinson, C. (1994) A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 13, 2849–2861.PubMedGoogle Scholar
  45. 45.
    Krylov, D., Barchi, J., and Vinson, C. (1998) Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids. J. Mol. Biol. 279, 959–972.PubMedCrossRefGoogle Scholar
  46. 46.
    Newman, J. R. and Keating, A. E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097–2101.PubMedCrossRefGoogle Scholar
  47. 47.
    Oakley, M. G. and Hollenbeck, J. J. (2001) The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 11, 450–457.PubMedCrossRefGoogle Scholar
  48. 48.
    Monera, O. D., Zhou, N. E., Kay, C. M., and Hodges, R. S. (1993) Comparison of antiparallel and parallel two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization. J. Biol. Chem. 268, 19,218–19,227.PubMedGoogle Scholar
  49. 49.
    Monera, O. D., Kay, C. M., and Hodges, R. S. (1994) Electrostatic interactions control the parallel and antiparallel orientation of alpha-helical chains in two-stranded alpha-helical coiled-coils. Biochemistry 33, 3862–3871.PubMedCrossRefGoogle Scholar
  50. 50.
    Oakley, M. G. and Kim, P. S. (1997) Protein dissection of the antiparallel coiled coil from Escherichia coli seryl tRNA synthetase. Biochemistry 36, 2544–2549.PubMedCrossRefGoogle Scholar
  51. 51.
    Kohn, W. D. and Hodges, R. S. (1998) De novo design of α-helical coiled coils and bundles: models for the development of protein-design principles. Trends Biotechnol. 16, 379–389.CrossRefGoogle Scholar
  52. 52.
    Monera, O. D., Zhou, N. E., Lavigne, P., Kay, C. M., and Hodges, R. S. (1996) Formation of parallel and antiparallel coiled-coils controlled by the relative positions of alanine residues in the hydrophobic core. J. Biol. Chem. 271, 3995–4001.PubMedCrossRefGoogle Scholar
  53. 53.
    Holton, J. and Alber, T. (2004) Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542.PubMedCrossRefGoogle Scholar
  54. 54.
    Gonzalez, L., Jr., Plecs, J. J., and Alber, T. (1996) An engineered allosteric switch in leucine-zipper oligomerization. Nat. Struct. Biol. 3, 510–515.PubMedCrossRefGoogle Scholar
  55. 55.
    Gurnon, D. G., Whitaker, J. A., and Oakley, M. G. (2003) Design and characterization of a homodimeric antiparallel coiled coil. J. Am. Chem. Soc. 125, 7518–7519.PubMedCrossRefGoogle Scholar
  56. 56.
    Oakley, M. G. and Kim, P. S. (1998) A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 37, 12,603–12,610.PubMedCrossRefGoogle Scholar
  57. 57.
    Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N., and Leberman, R. (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature 347, 249–255.PubMedCrossRefGoogle Scholar
  58. 58.
    Stebbins, C. E., Borukhov, S., Orlova, M., Polyakov, A., Goldfarb, A., and Darst, S. A. (1995) Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature 373, 636–640.PubMedCrossRefGoogle Scholar
  59. 59.
    McClain, D. L., Gurnon, D. G., and Oakley, M. G. (2002) Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure. J. Mol. Biol. 324, 257–270.PubMedCrossRefGoogle Scholar
  60. 60.
    McClain, D. L., Woods, H. L., and Oakley, M. G. (2001) Design and characterization of a heterodimeric coiled coil that forms exclusively with an antiparallel relative helix orientation. J. Am. Chem. Soc. 123, 3151–3152.PubMedCrossRefGoogle Scholar
  61. 61.
    Litowski, J. R. and Hodges, R. S. (2001) Designing heterodimeric two-stranded alpha-helical coiled-coils: the effect of chain length on protein folding, stability and specificity. J. Pept. Res. 58, 477–492.PubMedCrossRefGoogle Scholar
  62. 62.
    Lau, S. Y., Taneja, A. K., and Hodges, R. S. (1984) Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 259, 13,253–13,261.PubMedGoogle Scholar
  63. 63.
    Su, J. Y., Hodges, R. S., and Kay, C. M. (1994) Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils. Biochemistry 33, 15,501–15,510.PubMedCrossRefGoogle Scholar
  64. 64.
    Burkhard, P., Meier, M., and Lustig, A. (2000) Design of a minimal protein oligomerization domain by a structural approach. Protein Sci. 9, 2294–2301.PubMedCrossRefGoogle Scholar
  65. 65.
    Fairman, R., Chao, H. G., Mueller, L., Lavoie, T. B., Shen, L., Novotny, J., and Matsueda, G. R. (1995) Characterization of a new four-chain coiled-coil: influence of chain length on stability. Protein Sci. 4, 1457–1469.PubMedCrossRefGoogle Scholar
  66. 66.
    Kwok, S. C. and Hodges, R. S. (2004) Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded α-helical coiled-coils. J. Biol. Chem. 279, 21,576–21,588.PubMedCrossRefGoogle Scholar
  67. 67.
    Litowski, J. R. and Hodges, R. S. (2002) Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 277, 37,272–37,279.PubMedCrossRefGoogle Scholar
  68. 68.
    O’Neil, K. T. and DeGrado, W. F. (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651.PubMedCrossRefGoogle Scholar
  69. 69.
    Dahiyat, B. I., Gordon, D. B., and Mayo, S. L. (1997) Automated design of the surface positions of protein helices. Protein Sci. 6, 1333–1337.PubMedCrossRefGoogle Scholar
  70. 70.
    Mason, J. M., Schmitz, M. A., Müller, K. M., and Arndt, K. M. (2006) Semirational design of Jon-Fos coiled coils with increased affinity: universal implications for leucine zipper prediction and design. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  71. 71.
    Richardson, J. S. and Richardson, D. C. (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–1652.PubMedCrossRefGoogle Scholar
  72. 72.
    Dasgupta, S. and Bell, J. A. (1993) Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. Int. J. Pept. Protein Res. 41, 499–511.PubMedCrossRefGoogle Scholar
  73. 73.
    Kohn, W. D., Kay, C. M., and Hodges, R. S. (1997) Positional dependence of the effects of negatively charged Glu side chains on the stability of two-stranded alpha-helical coiled-coils. J. Pept. Sci. 3, 209–223.PubMedCrossRefGoogle Scholar
  74. 74.
    Doig, A. J. (2002) Recent advances in helix-coil theory. Biophys. Chem. 101–102, 281–293.PubMedCrossRefGoogle Scholar
  75. 75.
    Kumar, S. and Bansal, M. (1998) Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins. Proteins 31, 460–476.PubMedCrossRefGoogle Scholar
  76. 76.
    Aurora, R. and Rose, G. D. (1998) Helix capping. Protein Sci. 7, 21–38.PubMedGoogle Scholar
  77. 77.
    Lu, M., Shu, W., Ji, H., Spek, E., Wang, L., and Kallenbach, N. R. (1999) Helix capping in the GCN4 leucine zipper. J. Mol. Biol. 288, 743–752.PubMedCrossRefGoogle Scholar
  78. 78.
    Sober, H. A. (1977) CRC Handbook of Biochemistry and Molecular Biology. 3rd ed., The Chemical Rubber Co, Cleveland, OH.Google Scholar
  79. 79.
    Virnekäs, B., Ge, L., Plückthun, A., Schneider, K. C., Wellnhofer, G., and Moroney, S. E. (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607.PubMedCrossRefGoogle Scholar
  80. 80.
    Spanjaard, R. A. and van Duin, J. (1988) Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc. Natl. Acad. Sci. USA 85, 7967–7971.PubMedCrossRefGoogle Scholar
  81. 81.
    Jung, S., Arndt, K. M., Muller, K. M., and Pluckthun, A. (1999) Selectively infective phage (SIP) technology: scope and limitations. J. Immunol. Methods 231, 93–104.PubMedCrossRefGoogle Scholar
  82. 82.
    Arndt, K. M., Jung, S., Krebber, C., and Pluckthun, A. (2000) Selectively infective phage technology. Methods Enzymol. 328, 364–388.PubMedCrossRefGoogle Scholar
  83. 83.
    Nakamura, Y., Gojobori, T., and Ikemura, T. (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292; Scholar
  84. 84.
    Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685.PubMedCrossRefGoogle Scholar
  85. 85.
    West, M. W. and Hecht, M. H. (1995) Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Sci. 4, 2032–2039.PubMedCrossRefGoogle Scholar
  86. 86.
    Pelletier, J. N., Campbell-Valois, F. X., and Michnick, S. W. (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sci. USA 95, 12,141–12,146.PubMedCrossRefGoogle Scholar
  87. 87.
    Pelletier, J. N., Arndt, K. M., Plückthun, A., and Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17, 683–690.PubMedCrossRefGoogle Scholar
  88. 88.
    Arndt, K. M., Jouaux, E. M., and Willemsen, T. (2004) Der richtige Dreh—Coiled Coils auf dem Weg zur Anwendung. BioForum 10, 48–49.Google Scholar
  89. 89.
    Johnsson, N. and Varshavsky, A. (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10,340–10,344.PubMedCrossRefGoogle Scholar
  90. 90.
    Rossi, F., Charlton, C. A., and Blau, H. M. (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sci. USA 94, 8405–8410.PubMedCrossRefGoogle Scholar
  91. 91.
    Wehrman, T., Kleaveland, B., Her, J. H., Balint, R. F., and Blau, H. M. (2002) Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc. Natl. Acad. Sci. USA 99, 3469–3474.PubMedCrossRefGoogle Scholar
  92. 92.
    Galarneau, A., Primeau, M., Trudeau, L. E., and Michnick, S. W. (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622.PubMedCrossRefGoogle Scholar
  93. 93.
    Ghosh, I., Hamilton, A. D., and Regan, L. (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659.CrossRefGoogle Scholar
  94. 94.
    Miller, J. and Stagljar, I. (2004) Using the yeast two-hybrid system to identify interacting proteins. Methods Mol. Biol. 261, 247–262.PubMedGoogle Scholar
  95. 95.
    Marino-Ramirez, L., Campbell, L., and Hu, J. C. (2003) Screening peptide/protein libraries fused to the lambda repressor DNA-binding domain in E. coli cells. Methods Mol. Biol. 205, 235–250.PubMedGoogle Scholar
  96. 96.
    Hu, J. C., O’shea, E. K., Kim, P. S., and Sauer, R. T. (1990) Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Science 250, 1400–1403.PubMedCrossRefGoogle Scholar
  97. 97.
    Willats, W. G. (2002) Phage display: practicalities and prospects. Plant Mol. Biol. 50, 837–854.PubMedCrossRefGoogle Scholar
  98. 98.
    Keating, A. E., Malashkevich, V. N., Tidor, B., and Kim, P. S. (2001) Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Proc. Natl. Acad. Sci. USA 98, 14,825–14,830.PubMedCrossRefGoogle Scholar
  99. 99.
    Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T., and Kim, P. S. (1998) High-resolution protein design with backbone freedom. Science 282, 1462–1467.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Jody M. Mason
    • 1
  • Kristian M. Müller
    • 1
  • Katja M. Arndt
    • 1
  1. 1.Institut für Biologie IIIUniversität FreiburgFreiburgGermany

Personalised recommendations