Ribosome-Inactivation Display System

  • Satoshi Fujita
  • Jing-Min Zhou
  • Kazunari Taira
Part of the Methods in Molecular Biology™ book series (MIMB, volume 352)


We present a novel strategy for the connection of phenotype and genotype in vitro that can be used for the selection of functional proteins. The strategy involves the generation of a stable complex among a ribosome, an messenger RNA and its translated protein, without removal of the termination codon, as a result of the action of the ricin A chain during translation. The technique requires no transfection, no chemical synthesis, no ligation, and no removal of the termination codon. Thus, our novel ribosome-inactivation display system should provide, without loss of the pool population, a reliable, simple, and robust selection system for the in vitro evolution of the properties of proteins in a predictable direction by a combination of randomization and appropriate selection strategies.

Key Words

Ribosome-inactivation display system in vitro selection molecular evolution protein ribosome display mRNA display phage display ricin A chain protein-ribosome-mRNA complex 


  1. 1.
    Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.PubMedCrossRefGoogle Scholar
  2. 2.
    Kasahara, N., Dozy, A. M., and Kan, Y. M. (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376.PubMedCrossRefGoogle Scholar
  3. 3.
    Georgiou, G., Poetschke, H. L., Stathopoulos, C., and Francisco, J. A. (1993) Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol. 11, 6–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Kieke, M. C., Cho, B. K., Boder, E. T., Kranz, D. M., and Wittrup, K. D. (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310.PubMedCrossRefGoogle Scholar
  5. 5.
    Mattheakis, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanes, J. and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.PubMedCrossRefGoogle Scholar
  7. 7.
    He, M. Y., Menges, M., Groves, M. A. T., et al. (1999) Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. J. Immunol. Methods 231, 105–117.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts, R. W. and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12,297–12,302.PubMedCrossRefGoogle Scholar
  9. 9.
    Nemoto, N., Miyamoto-Sato, E., Husimi, Y., and Yanagawa, H. (1997) In vitro virus: Bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408.PubMedCrossRefGoogle Scholar
  10. 10.
    Endo, Y. and Tsurugi, K. (1987) RNA N-glycosidase activity of ricin a chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 262, 8128–8130.PubMedGoogle Scholar
  11. 11.
    Endo, Y., Mitsui, K., Motizuki, M., and Tsuruki, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J. Biol. Chem. 262, 5908–5912.PubMedGoogle Scholar
  12. 12.
    Moazed, D., Robertson, J., and Noller, H. (1989) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S rRNA. Nature 334, 362–364.CrossRefGoogle Scholar
  13. 13.
    Kudlicki, W., Kitaoka, Y., Odom, O. W., Kramer, G., and Hardesty, B. (1995) Elongation and folding of nascent ricin chains as peptidyl-tRNA on ribosomes: the effect of amino acid deletions on these processes. J. Mol. Biol. 252, 203–212.PubMedCrossRefGoogle Scholar
  14. 14.
    Munishkin, A. and Wool, I. G. (1997) The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl. Acad. Sci. USA 94, 12,280–12,284.PubMedCrossRefGoogle Scholar
  15. 15.
    Eiklid, K., Olsnes, S., and Pihl, A. (1980) Entry of lethal doses of abrin, ricin, and modeccin into the cytosol of HeLa cells. Exp. Cell Res. 126, 321–326.PubMedCrossRefGoogle Scholar
  16. 16.
    Mössner, E., Koch, H., and Plückthun, A. (2001) Fast selection of antibodies without antigen purification: adaptation of the protein fragment complementation assay to select antigen-antibody pairs. J. Mol. Biol. 308, 115–122.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, R., Barrick, J. E., Szostak, J. W., and Roberts, R. W. (2000) Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 318, 268–293.PubMedCrossRefGoogle Scholar
  18. 18.
    Malkin, L. I. and Rich, A. (1967) Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26, 329–346.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith, W. P., Tai, P. C., and Davis, B. D. (1978) Interaction of secreted nascent chains with surrounding membrane in bacillus subtilis. Proc. Natl. Acad. Sci. USA 75, 5922–5925.PubMedCrossRefGoogle Scholar
  20. 20.
    Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1997) Cotranslational folding of globin. J. Biol. Chem. 272, 10,646–10,651.PubMedCrossRefGoogle Scholar
  21. 21.
    Fedorov, A. N. and Baldwin, T. O. (1997) Cotranslational protein folding. J. Biol. Chem. 272, 32,715–32,718.PubMedCrossRefGoogle Scholar
  22. 22.
    Kudlicki, W., Chirgwin, J., Kramer, G., and Hardesty, B. (1995) Folding of an enzyme into an active confirmation while bound as a peptidyl-tRNA to the ribosome. Biochemistry 34, 14,284–14,287.PubMedCrossRefGoogle Scholar
  23. 23.
    Makeyev, E. V., Kolb, V. A., and Spirin, A. S. (1996) Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett. 378, 166–170.PubMedCrossRefGoogle Scholar
  24. 24.
    Schaffitzel, C., Hanes, J., Jermutus, L., and Plückthun, A. (1999) Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 231, 119–135.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson, D. S., Keefe, A. D., and Szostak, J. W. (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755.PubMedCrossRefGoogle Scholar
  26. 26.
    Doi, N. and Yanagawa, H. (1999) STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett. 457, 227–230.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheadle, C., Ivashchenko, Y., South, V., et al. (1994) Identification of a Src SH3 domain binding motif by screening a random phage display library. J. Biol. Chem. 269, 24,034–24,039.PubMedGoogle Scholar
  28. 28.
    Gram, H., Schmitz, R., Zuber, J. F., and Baumann, G. (1997) Identification of phosphopeptide ligands for the Src-homology 2 (SH2) domain of Grb2 by phage display. Eur. J. Biochem. 246, 633–637.PubMedCrossRefGoogle Scholar
  29. 29.
    Frankel, A., Welsh, P., Richardson, J., and Robertus, J. D. (1990) Role of arginine 180 and glutamic acid 177 of ricin toxin a chain in enzymatic inactivation of ribosomes. Mol. Cell Biol. 10, 6257–6263.PubMedGoogle Scholar
  30. 30.
    Kim, Y., Mlsa, D., Monzingo, A. F., Ready, M. P., Frankel, A., and Robertus, J. D. (1992) Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry 31, 3294–3296.PubMedCrossRefGoogle Scholar
  31. 31.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  32. 32.
    Hanes, J., Jermutus, L., and Plücktun, A. (2000) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328, 404–430.PubMedCrossRefGoogle Scholar
  33. 33.
    Sawata, Y. S., Wada, A., and Taira, K. (2003) An advanced ribosome-display with strengthened association (ARiSA) for in vitro selection of a peptide aptamer with strong affinity. Manuscript in preparation.Google Scholar
  34. 34.
    Sawata, S. Y., and Taira, K. (2003) Modified peptide selection in vitro by introduction of a protein-RNA interaction. Protein Eng. 16, 1115–1124.PubMedCrossRefGoogle Scholar
  35. 35.
    Sawata, S. Y., Suyama, E., and Taira, K. (2004) A system based on specific protein-RNA interactions for analysis of target protein-protein interactions in vitro: successful selection of membrane-bound Bak-Bcl-xL proteins in vitro. Protein Eng. Des. Sel. 17, 501–508.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Satoshi Fujita
    • 1
    • 2
  • Jing-Min Zhou
    • 1
    • 3
  • Kazunari Taira
    • 1
    • 3
  1. 1.Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoHongo, TokyoJapan
  2. 2.Research Institute for Cell EngineeringNational Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Gene Function Research LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Science CityJapan

Personalised recommendations