Skip to main content

In Vitro Assay of Immunostimulatory Activities of Plasmid Vectors

  • Protocol
DNA Vaccines

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 127))

  • 1315 Accesses

Abstract

DNA vaccination represents a novel and potentially important approach to induce immune responses against protein antigens. In this approach, the vaccine is a plasmid DNA vector that can be taken up by cells to produce a protein, encoded by the vector, to be targeted for the induction of humoral or cellular responses. Although the intracellular production of the antigen may promote responses, the vectors themselves may display adjuvant activity because of their intrinsic immunostimulatory properties. These properties reflect sequence motifs, centering on an unmethylated CpG dinucleotide, which can trigger the TLR9 pattern recognition receptor. As shown by studies in vitro, plasmid DNA can stimulate B cells, macrophages, and dendritic cells, and trigger a broad range of pro-inflammatory responses. Because this stimulation results from common sequence motifs, the activity of a plasmid vector can be assessed by the in vitro assay of a limited number of responses, including proliferation of B cells as well as production of cytokines by macrophages or dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel, F. R. and Sarver, N. (1995) Nucleic acid vaccines. Clin. Microbiol. Rev. 8, 406ā€“410.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Pardoll, D. M. and Beckerleg, A. M. (1995) Exposing the immunology of naked DNA vaccines. Immunity 3, 165ā€“169.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Srivastava, I. K. and Liu, M. A. (2003) Gene Vaccines. Ann. Intern. Med. 138, 550ā€“559.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Corr, M., Lee, D. J., Carson, D. A., and Tighe, H. (1996) Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J. Exp. Med. 184, 1555ā€“1560.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Haas, J., Park, E. C., and Seed, B. (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6, 315ā€“324.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. zur Megede, J., Chen, M. C., Doe, B., et al. (2000) Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J. Virol. 74, 2628ā€“2635.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Iwasaki, A., Stiernholm, B. J., Chan, A. K., Berinstein, N. L., and Barber, B. H. (1997) Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J. Immunol. 158, 4591ā€“4601.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Sasaki, S., Tsuji, T., Asakura, Y., Fukushima, J., and Okuda, K. (1998) The search for a potent DNA vaccine against AIDS: the enhancement of immunogenicity by chemical and genetic adjuvants. Anticancer Res. 18, 3907ā€“3915.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Sedegah, M., Weiss, W., Sacci, J. B., Jr., et al. (2000) Improving protective immunity induced by DNA-based immunization: priming with antigen and GMCSF-encoding plasmid DNA and boosting with antigen-expressing recombinant poxvirus. J. Immunol. 164, 5905ā€“5912.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Barouch, D. H., McKay, P. F., Sumida, S. M., et al. (2003) Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J. Virol. 77, 8729ā€“8735.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Mendoza, R. B., Cantwell, M. J., and Kipps, T. J. (1997) Immunostimulatory effects of a plasmid expressing CD40 ligand (CD154) on gene immunization. J. Immunol. 159, 5777ā€“5781.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Santra, S., Barouch, D. H., Jackson, S. S., et al. (2000) Functional equivalency of B7-1 and B7-2 for costimulating plasmid DNA vaccine-elicited CTL responses. J. Immunol. 165, 6791ā€“6795.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Barnett, S. W., Rajasekar, S., Legg, H., et al. (1997) Vaccination with HIV-1 gp120 DNA induces immune responses that are boosted by a recombinant gp120 protein subunit. Vaccine 15, 869ā€“873.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Pisetsky, D. S. (1996) The immunologic properties of DNA. J. Immunol. 156, 421ā€“423.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Pisetsky, D. S. (1996) Immune activation by bacterial DNA: a new genetic code. Immunity 5, 303ā€“310.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A toll-like receptor recognizes bacterial DNA. Nature 408, 740ā€“745.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Bauer, S., Kirschning, C. J., Hacker, H., et al. (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237ā€“9242.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Krug, A., Towarowski, A., Britsch, S., et al. (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026ā€“3037.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Yi, A. K., Tuetken, R., Redford, T., Waldschmidt, M., Kirsch, J., and Krieg, A. M. (1998) CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755ā€“4761.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Yi, A. K. and Krieg, A. M. (1998) Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J. Immunol. 161, 4493ā€“4497.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S. and Wagner, H. (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595ā€“600.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Chuang, T. H., Lee, J., Kline, L., Mathison, J. C., and Ulevitch, R. J. (2002) Tolllike receptor 9 mediates CpG-DNA signaling. J. Leukoc. Biol. 71, 538ā€“544.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Yamarmoto, S., Kurarnoto, E., Shimada, S., and Tokunaga, T. (1988) In vitro augmentation of natural killer cell activity and production of interferon-Ī±/Ī² and-Ī³ with deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Jpn. J. Cancer Res. 79, 866ā€“873.

    Google ScholarĀ 

  24. Yarmarmoto, S., Yarnarnoto, T., Shimada, S., et al. (1992) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol. Immunol. 36, 983ā€“997.

    Google ScholarĀ 

  25. Messina, J. P., Gilkeson, G. S., and Pisetsky, D. S. (1991) Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol. 147, 1759ā€“1764.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Krieg, A. M., Yi, A.-K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546ā€“549.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Klinman, D. M., Yi, A.-K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon. Proc. Natl. Acad. Sci. USA 93, 2879ā€“2883.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Halpern, M. D., Kurlander, R. J., and Pisetsky, D. S. (1996) Bacterial DNA induces murine interferon-Ī³ production by stimulation of interleukin-12 and tumor necrosis factor-Ī±. Cell. Immunol. 167, 72ā€“78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Hartmann, G. and Krieg, A. M. (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944ā€“953.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Kataoka, T., Yamamoto, S., Yamamoto, T., et al. (1992) Antitumor activity of synthetic oligonucleotides with sequences from cDNA encoding proteins of Mycobacterium bovis BCG. Jpn. J. Cancer Res. 83, 244ā€“247.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Krieg, A. M. (1995) CpG DNA: a pathogenic factor in systemic lupus erythematosus? J. Clin. Immunol. 15, 284ā€“292.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Ballas, Z. K., Rasmussen, W. L., and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol. 157, 1840ā€“1845.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Boggs, R. T., McGraw, K., Condon, T., et al. (1997) Characterization and modulation of immune stimulation by modified oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 461ā€“471.

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Vollmer, J., Weeratna, R., Payette, P., et al. (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 34, 251ā€“262.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Yu, D., Kandimalla, E. R., Bhagat, L., et al. (2002) ā€˜Immunomersā€™-novel 3ā€²-3ā€²-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res. 30, 4460ā€“4469.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Messina, J. P., Gilkeson, G. S., and Pisetsky, D. S. (1993) The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens. Cell. Immunol. 147, 148ā€“157.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Pisetsky, D. S. and Reich, C. (1993) Stimulation of in vitro proliferation of murine lymphocytes by synthetic oligodeoxynucleotides. Molec. Biol. Rep. 18, 217ā€“221.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Kimura, Y., Sonehara, K., Kuramoto, E., et al. (1994) Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J. Biochem. 116, 991ā€“994.

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Wloch, M. K., Pasquini, S., Ertl, H. C., and Pisetsky, D. S. (1998) The influence of DNA sequence on the immunostimulatory properties of plasmid DNA vectors. Hum. Gene Ther. 9, 1439ā€“1447.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Krieger, M. and Herz, J. (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 604ā€“637.

    Google ScholarĀ 

  41. Klinman, D. M., Yamshchikov, G. and Ishigatsubo, Y. (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J. Immunol. 158, 3635ā€“3639.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Cornelie, S., Poulain-Godefroy, O., Lund, C., et al. (2004) Methylated CpG-containing plasmid activates the immune system. Scand. J. Immunol. 59, 143ā€“151.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Spies, B., Hochrein, H., Vabulas, M., et al. (2003) Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol. 171, 5908ā€“5912.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Babiuk, S., Mookherjee, N., Pontarollo, R., et al. (2004) TLR9 and TLR9 mice display similar immune responses to a DNA vaccine. Immunology 113, 114ā€“120.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Ma, X., Forns, X., Gutierrez, R., et al. (2002) DNA-based vaccination against hepatitis C virus (HCV): effect of expressing different forms of HCV E2 protein and use of CpG-optimized vectors in mice. Vaccine 20, 3263ā€“3271.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Sato, Y., Roman, M., Tighe, H., et al. (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352ā€“354.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Klinman, D. M., Yamshchikov, G., and Ishigatsubo, Y. (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J. Immunol. 158, 3635ā€“3639.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Raz, E., Tighe, H., Sato, Y., et al. (1996) Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc. Natl. Acad. Sci. USA 93, 5141ā€“5145.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Leifer, C. A., Verthelyi, D., and Klinman, D. M. (2003) Heterogeneity in the human response to immunostimulatory CpG oligodeoxynucleotides. J. Immunol. 26, 313ā€“331.

    CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Jiang, W., Reich, C.F., Pisetsky, D.S. (2006). In Vitro Assay of Immunostimulatory Activities of Plasmid Vectors. In: Saltzman, W.M., Shen, H., Brandsma, J.L. (eds) DNA Vaccines. Methods in Molecular Medicineā„¢, vol 127. Humana Press. https://doi.org/10.1385/1-59745-168-1:55

Download citation

  • DOI: https://doi.org/10.1385/1-59745-168-1:55

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-484-5

  • Online ISBN: 978-1-59745-168-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics