Skip to main content

Protein Arrays

A Versatile Toolbox for Target Identification and Monitoring of Patient Immune Responses

  • Protocol
Target Discovery and Validation Reviews and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 360))

Summary

Functional proteomics is a promising technique for the rational identification of novel therapeutic targets and biological markers. The studies of protein-protein interactions have been gained from the development of high-throughput technologies such as the yeast two-hybrid system, protein arrays, phage display, and systematic analysis of interaction maps for the prediction of protein functions. Because antibodies are used extensively as diagnostic and clinical tools, the characterization of their antigen specificity is of prime importance. Indeed, screening protein arrays with sera from patients with either cancer or autoimmune diseases would facilitate the identification of autoantibody signatures that can be used for diagnosis and/or prognosis of patients. The usefulness of multiplexed measurements lies not only in the ability to screen many individual marker candidates but also in evaluating the use of multiple markers in combination. Here, we review the advantage of protein and serum screening of peptides and cDNA repertoires displayed on phages as well as the fabrication of protein microarrays for probing immune responses in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields, S. and Song, O.-K. (1989) A novel genetic system to detect protein Â-protein interactions. 340, 245–246.

    CAS  Google Scholar 

  2. Bartel, P. L., Roecklein, J. A., SenGupta, D., and Fields, S. (1996) A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet. 12, 72–77.

    Article  CAS  PubMed  Google Scholar 

  3. Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.

    Article  CAS  PubMed  Google Scholar 

  4. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.

    Article  CAS  PubMed  Google Scholar 

  5. Becker, F., Murthi, K., Smith, C. W., et al. (2004) A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem. Biol. 11, 211–223.

    CAS  PubMed  Google Scholar 

  6. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  7. Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.

    Article  CAS  PubMed  Google Scholar 

  8. Sheets, M. D., Amersdorfer, P., Finnern, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  CAS  PubMed  Google Scholar 

  9. Dybwad, A., Lambin, P., Sioud, M., and Zouali, M. (2003) Probing the specificity of human myeloma proteins with a random peptide phage library. Scand. J. Immunol. 57, 583–590.

    Article  CAS  PubMed  Google Scholar 

  10. Souriau, C. and Hudson, P. J. (2003) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 3, 305–318.

    Article  CAS  PubMed  Google Scholar 

  11. Moghaddam, A., Borgen, T., Stacy, J., et al. (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J. Immunol. Methods 280, 139–155.

    Article  CAS  PubMed  Google Scholar 

  12. Dybwad, A., Forre, O., Kjeldsen-Kragh, J., Natvig, J. B., and Sioud, M. (1993) Identification of new B cell epitopes in the sera of rheumatoid arthritis patients using a random nanopeptide phage library. Eur. J. Immunol. 23, 3189–3193.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, M. H., Dybwad, A., Forre, O., and Sioud, M. (2000) Probing antinuclear antibody specificities by peptide phage display libraries. Clin. Exp. Rheumatol. 18, 465–472.

    CAS  PubMed  Google Scholar 

  14. Hansen, M. H., Nielsen, H., and Ditzel, H. J. (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc. Natl. Acad. Sci. USA 98, 12,659–12,664.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen, M. H., Ostenstad, B., and Sioud, M. (2001) Identification of immunogenic antigens using a phage-displayed cDNA library from an invasive ductal breast carcinoma tumour. Int. J. Oncol. 19, 1303–1309.

    CAS  PubMed  Google Scholar 

  16. Hansen, M. H., Ostenstad, B., and Sioud, M. (2001) Antigen-specific IgG antibodies in stage IV long-time survival breast cancer patients. Mol. Med. 7, 230–239.

    CAS  PubMed  Google Scholar 

  17. Hansen, M. H., Sode, L. L., Hyldig-Nielsen, J. J., and Engberg, J. (1997) Detection of PNA/DNA hybrid molecules by antibody Fab fragments isolated from a phage display library. J. Immunol. Methods 203, 199–207.

    Article  CAS  Google Scholar 

  18. Cekaite, H. L., Myklebost, O., Aldrin, M., et al. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.

    Article  CAS  PubMed  Google Scholar 

  19. Sioud, M., Hansen, M., and Dybwad, A. (2000) Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int. J. Mol. Med. 6, 123–128.

    CAS  PubMed  Google Scholar 

  20. Sioud, M. and Hansen, M. H. (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 31, 716–725.

    Article  CAS  PubMed  Google Scholar 

  21. Barry, M. A., Dower, W. J., and Johnston, S. A. (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat. Med. 2, 299–305.

    Article  CAS  PubMed  Google Scholar 

  22. Cagney, G., Uetz, P., and Fields, S. (2000) High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328, 3–14.

    Article  CAS  PubMed  Google Scholar 

  23. Cekaite, H. L., Myklebost, O., Aldrin, M., et al. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.

    Article  CAS  PubMed  Google Scholar 

  24. Borrebaeck, C. A., Ekstrom, S., Hager, A. C., Nilsson, J., Laurell, T., and Marko-Varga, G. (2001) Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. BioTechniques 30, 1126–1130, 1132.

    CAS  PubMed  Google Scholar 

  25. Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004.

    Google Scholar 

  26. Kim, T. E., Park, S. W., Cho, N. Y., et al. (2002) Quantitative measurement of serum allergen-specific IgE on protein chip. Exp. Mol. Med. 34, 152–158.

    CAS  PubMed  Google Scholar 

  27. Wingren, C., Steinhauer, C., Ingvarsson, J., Persson, E., Larsson, K., and Borrebaeck, C. A. (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics 5, 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  28. Miller, J. C., Zhou, H., Kwekel, J., et al. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson, W. H., DiGennaro, C., Hueber, W., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301.

    Article  CAS  PubMed  Google Scholar 

  30. Quintana, F. J., Hagedorn, P. H., Elizur, G., Merbl, Y., Domany, E., and Cohen, I. R. (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc. Natl. Acad. Sci. USA 101(Suppl. 2), 14,615–14,621.

    Article  CAS  PubMed  Google Scholar 

  31. Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003) Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J. Virol. 77, 11,125–11,138.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, O., Joos, M. S., Höpfl, P., et al. (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650.

    Article  Google Scholar 

  33. Madoz-Gurpide, J., Wang, H., Misek, D. E., Brichory, F., and Hanash, S. M. (2001) Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1, 1279–1287.

    Article  CAS  PubMed  Google Scholar 

  34. Nam, M. J., Madoz-Gurpide, J., Wang, H., et al. (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3, 2108–2115.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, H., Klemic, J. F., Chang, S., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.

    Article  CAS  PubMed  Google Scholar 

  37. Kersten, B., Feilner, T., Kramer, A., et al. (2003) Generation of Arabidopsis protein chips for antibody and serum screening. Plant Mol. Biol. 52, 999–1010.

    Article  CAS  PubMed  Google Scholar 

  38. Feilner, T., Hultschig, C., Lee, J., et al. (2005) High-throughput identification of potential Arabidopsis MAP kinases substrates. Mol. Cell Proteomics 4, 1558–1568.

    Article  CAS  PubMed  Google Scholar 

  39. Walhout, A. J., Sordella, R., Lu, X., et al. (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122.

    Article  CAS  PubMed  Google Scholar 

  40. Heyman, J. A., Cornthwaite, J., Foncerrada, L., et al. (1999) Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res. 9, 383–392.

    CAS  PubMed  Google Scholar 

  41. Bussow, K., Cahill, D., Nietfeld, W., et al. (1998) A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008.

    Article  CAS  PubMed  Google Scholar 

  42. Gutjahr, C., Murphy, D., Lueking, A., et al. (2005) Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling. Genomics 85, 285–296.

    Article  CAS  PubMed  Google Scholar 

  43. Mintz, P. J., Kim, J., Do, K. A., et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21, 57–63.

    Article  CAS  PubMed  Google Scholar 

  44. Vidal, C. I., Mintz, P. J., Lu, K., et al. (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23, 8859–8867.

    Article  CAS  PubMed  Google Scholar 

  45. Ansuini, H., Cicchini, C., Nicosia, A., Tripodi, M., Cortese, R., and Luzzago, A. (2002) Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res. 30, e78.

    Article  PubMed  Google Scholar 

  46. Shadidi, M. and Sioud, M. (2002) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 17, 256–258.

    PubMed  Google Scholar 

  47. Arap, W., Kolonin, M. G., Trepel, M., et al. (2002) Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127.

    Article  CAS  PubMed  Google Scholar 

  48. He, M. and Taussig, M. J. (2003) DiscernArray technology: a cell-free method for the generation of protein arrays from PCR DNA. J. Immunol. Methods 274, 265–270.

    Article  CAS  PubMed  Google Scholar 

  49. Yuko Kawahashi, N. D., Takashima, H., Tsuda, C., et al. (2003) In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 3, 1236–1243.

    Article  PubMed  Google Scholar 

  50. Santini, C., Brennan, D., Mennuni, C., et al. (1998) Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282, 125–135.

    Article  CAS  PubMed  Google Scholar 

  51. Sternberg, N. and Hoess, R. H. (1995) Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92, 1609–1613.

    Article  CAS  PubMed  Google Scholar 

  52. Danner, S. and Belasco, J. G. (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Natl. Acad. Sci. USA 98, 12,954–12,959.

    Article  CAS  PubMed  Google Scholar 

  53. Ren, Z. J., Lewis, G. K., Wingfield, P. T., Locke, E. G., Steven, A. C., and Black, L. W. (1996) Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5, 1833–1843.

    Article  CAS  PubMed  Google Scholar 

  54. Steinhauer, C., Wingren, C., Hager, A. C., and Borrebaeck, C. A. (2002) Single framework recombinant antibody fragments designed for protein chip applications. BioTechniques Suppl, 38–45.

    Google Scholar 

  55. Holt, L. J., Enever, C., de Wildt, R. M., and Tomlinson, I. M. (2000) The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11, 445–449.

    Article  CAS  PubMed  Google Scholar 

  56. de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989–994.

    Article  PubMed  Google Scholar 

  57. Poetz, O., Ostendorp, R., Brocks, B., et al. (2005) Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics 5, 2402–2411.

    Article  CAS  PubMed  Google Scholar 

  58. Uetz, P. (2002) Two-hybrid arrays. Curr. Opin. Chem. Biol. 6, 57–62.

    Article  CAS  PubMed  Google Scholar 

  59. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., and Walter, G. (1999) Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111.

    Article  CAS  PubMed  Google Scholar 

  60. Lueking, A., Possling, A., Huber, O., et al. (2003) A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell Proteomics 2, 1342–1349.

    Article  CAS  PubMed  Google Scholar 

  61. Sioud, M., Dybwad, A., Jespersen, L., Suleyman, S., Natvig, J. B., and Forre, O. (1994) Characterization of naturally occurring autoantibodies against tumour necrosis factor-alpha (TNF-alpha): in vitro function and precise epitope mapping by phage epitope library. Clin. Exp. Immunol. 98, 520–525.

    Article  CAS  PubMed  Google Scholar 

  62. Yip, Y. L. and Ward, R. L. (2002) Application of phage display technology to cancer research. Curr. Pharm. Biotechnol. 3, 29–43.

    Article  CAS  PubMed  Google Scholar 

  63. Portefaix, J. M., Fanutti, C., Granier, C., et al. (2002) Detection of anti-p53 antibodies by ELISA using p53 synthetic or phage-displayed peptides. J. Immunol. Methods 259, 65–75.

    Article  CAS  PubMed  Google Scholar 

  64. Rodi, D. J., Soares, A. S., and Makowski, L. (2002) Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries. J. Mol. Biol. 322, 1039–1052.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, K. J., Mao, S., Sun, C., et al. (2002) Phage-display selection of a human single-chain fv antibody highly specific for melanoma and breast cancer cells using a chemoenzymatically synthesized G(M3)-carbohydrate antigen. J. Am. Chem. Soc. 124, 12,439–12,446.

    Article  CAS  PubMed  Google Scholar 

  66. Huls, G., Heijnen, I. A., Cuomo, E., et al. (1999) Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res. 59, 5778–5784.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Cekaite, L., Hovig, E., Sioud, M. (2007). Protein Arrays. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 360. Humana Press. https://doi.org/10.1385/1-59745-165-7:335

Download citation

  • DOI: https://doi.org/10.1385/1-59745-165-7:335

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-656-6

  • Online ISBN: 978-1-59745-165-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics