Skip to main content

Analysis of Gene Networks for Drug Target Discovery and Validation

  • Protocol
Target Discovery and Validation Reviews and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 360))

  • 2169 Accesses

Summary

Understanding responses of the cellular system for a dosing molecule is one of the most important problems in pharmacogenomics. In this chapter, we describe computational methods for identifying and validating drug target genes based on the gene networks estimated from microarray gene expression data. We use two types of microarray gene expression data: gene disruptant microarray data and time-course drug response microarray data. For this purpose, the information of gene networks plays an essential role and is unattainable from clustering methods, which are the standard for gene expression analysis. The gene network is estimated from disruptant microarray data by the Bayesian network model, and then the proposed method automatically identifies sets of genes or gene regulatory pathways affected by the drug. We use an actual example from analysis of Saccharomyces cerevisiae gene expression profile data to express a concrete strategy for the application of gene network information toward drug target discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (1998) A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inform. 9, 151–160.

    CAS  Google Scholar 

  2. Akutsu, T., Miyano, S., and Kuhara, S. (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. 4, 17–28.

    Google Scholar 

  3. Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, T., He, H. L., and Church, G. M. (1999) Modeling gene expression with differential equations. Pac. Symp. Biocomput. 4, 29–40.

    Google Scholar 

  5. De Hoon, M. J. L., Imoto, S., Kobayashi, K., Ogasawara, N., and Miyano, S. (2003) Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac. Symp. Biocomput. 8, 17–28.

    Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000) Using Bayesian network to analyze expression data. J. Comp. Biol. 7, 601–620.

    Article  CAS  Google Scholar 

  7. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., and Young, R. A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput. 6, 422–433.

    Google Scholar 

  8. Pe’er, D., Regev, A., Elidan, G., and Friedman, N. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl. 1), S215–S224.

    PubMed  Google Scholar 

  9. Imoto, S., Goto, T., and Miyano, S. (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput. 7, 175–186.

    Google Scholar 

  10. Imoto, S., Kim, S., Goto, T., et al. (2003) Bayesian network and nonparametric heteroscedastic regression for non-linear modeling of genetic network. J. Bioinform. Comp. Biol. 1, 231–252.

    Article  CAS  Google Scholar 

  11. Imoto, S., Savoie, C. J., Aburatani, S., et al. (2003) Use of gene networks for identifying and validating drug targets. J. Bioinform. Comput. Biol. 1, 459–474.

    Article  CAS  PubMed  Google Scholar 

  12. Savoie, C. J., Aburatani, S.,Watanabe, S., et al. (2003) Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades. DNA Res. 10, 19–25.

    Article  CAS  PubMed  Google Scholar 

  13. Tamada, Y., Imoto, S., Tashiro, K., Kuhara, S., and Miyano, S. (2005) Identifying drug active pathways from gene networks estimated by gene expression data. Genome Inform Ser Workshop Genome Inform 16, 182–191.

    CAS  Google Scholar 

  14. Aburatani, S., Tashiro, K., Savoie, C. J., et al. (2003) Discovery of novel transcription control relationships with gene regulatory networks generated from multiple-disruption full genome expression libraries. DNA Res. 10, 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32(Suppl.), 496–501.

    Article  CAS  PubMed  Google Scholar 

  16. Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., and Eguchi, Y. (2001) Development of a system for the inference of large scale genetic networks. Pac. Symp. Biocomput. 6, 446–458.

    Google Scholar 

  17. Konishi, S. (1999) Statistical model evaluation and information criteria, in Multivariate Analysis, Design of Experiments and Survey Sampling (Ghosh, S., ed.), Marcel Dekker, New York, pp. 369–399.

    Google Scholar 

  18. Cooper, G. and Herskovits, E. (1992) A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347.

    Google Scholar 

  19. Hastie, T. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman & Hall, London.

    Google Scholar 

  20. De Boor, C. (1978) A Practical Guide to Splines. Springer-Verlag, Berlin.

    Google Scholar 

  21. Imoto, S. and Konishi, S. (2003) Selection of smoothing parameters in B-spline nonparametric regression models using information criteria. Ann. Inst. Stat. Math. 55, 671–687.

    Article  Google Scholar 

  22. Davison, A. C. (1986) Approximate predictive likelihood. Biometrika 73, 323–332.

    Article  Google Scholar 

  23. Tinerey, L. and Kadane, J. B. (1986) Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81, 82–86.

    Article  Google Scholar 

  24. Konishi, S., Ando, T., and Imoto, S. (2004) Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika 91, 27–43.

    Article  Google Scholar 

  25. Neapolitan, R. E. (2004) Learning Bayesian Networks. Peirson Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  26. Ott, S., Imoto, S., and Miyano, S. (2004) Finding optimal models for small gene networks. Pac. Symp. Biocomput. 9, 557–567.

    Google Scholar 

  27. Shmulevich, I. and Zhang, W. (2002) Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18, 555–565.

    Article  CAS  PubMed  Google Scholar 

  28. Imoto, S., Higuchi, T., Kim, S., Jeong, E., and Miyano, S. (2005) Residual bootstrapping and median filtering for robust estimation of gene networks from microarray data, in Proceedings of the 2nd Computational Methods in Systems Biology, Lecture Note in Bioinformatics 3082, Springer-Verlag, Berlin, 149–160.

    Chapter  Google Scholar 

  29. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., and Miyano, S. (2004) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol. 2, 77–98.

    Article  CAS  PubMed  Google Scholar 

  30. Tamada, Y., Kim, S., Bannai, H., et al. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19(Suppl. 2), II227–II236.

    PubMed  Google Scholar 

  31. Nariai, N., Kim, S., Imoto, S., and Miyano, S. (2004) Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pac. Symp. Biocomput. 9, 336–347.

    Google Scholar 

  32. Nariai, N., Tamada, Y., Imoto, S., and Miyano, S. (2005) Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics 21(Suppl.), II206–II212.

    Article  CAS  PubMed  Google Scholar 

  33. Tamada, Y., Bannai, H., Imoto, S., Katayama, T., Kanehisa, M., and Miyano, S. (2005) Utilizing evolutionary information and gene expression data for estimating gene regulations with Bayesian network models. J. Bioinform. Comput. Biol. 3, 1295–1313.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy, K. and Mian, S. (1999) Modelling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA.

    Google Scholar 

  35. Kim, S., Imoto, S., and Miyano, S. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform. 4, 228–235.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, S., Imoto, S., and Miyano, S. (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57–65.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida, R., Imoto, S., and Higuchi, T. (2005) Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching. Proc. IEEE 4th Comput. Syst. Bioinform. Conf., 289–298.

    Google Scholar 

  38. Efron, B. and Tibshirani, R. J. (1993) An Introduction to the Bootstrap. Chapman & Hall, New York.

    Google Scholar 

  39. Kamimura, T., Shimodaira, H., Imoto, S., et al. (2003) Multiscale bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression. Genome Inform. 14, 350–351.

    Google Scholar 

  40. Shimodaira, H. (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann. Stat. 32, 2616–2641.

    Article  Google Scholar 

  41. Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  42. Cooper, G. (1990) The computational complexity of probabilistic inference using bayesian belief networks. Artif. Intell. 42, 393–405.

    Article  Google Scholar 

  43. Lauritzen, S. L. (1996) Graphical Models. Oxford University Press, New York.

    Google Scholar 

  44. Neal, R. M. (1993) Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

    Google Scholar 

Download references

Acknowledgments

We thank our colleagues and collaborators Hideo Bannai, Michiel de Hoon, Ryo Yoshida, Takao Goto, Sunyong Kim, Naoki Nariai, Sascha Ott, Tomoyuki Higuchi, Hidetoshi Shimodaira, Sachiyo Aburatani, Kousuke Tashiro, and Satoru Kuhara.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Imoto, S., Tamada, Y., Savoie, C.J., Miyanoaa, S. (2007). Analysis of Gene Networks for Drug Target Discovery and Validation. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 360. Humana Press. https://doi.org/10.1385/1-59745-165-7:33

Download citation

  • DOI: https://doi.org/10.1385/1-59745-165-7:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-656-6

  • Online ISBN: 978-1-59745-165-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics