Target Discovery and Validation in Pancreatic Cancer

  • Robert M. Beaty
  • Mads Gronborg
  • Jonathan R. Pollack
  • Anirban Maitra
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)

Summary

Pancreatic cancer is a lethal disease and rational strategies fo gene expression, and mass spectrometric analysis of proteins, have led to identification of cellular targets with considerable potential for clinical application and patient care. These studies underscore the importance of pursuing large-scale profiling of human cancers not only for furthering our understanding of the pathogenesis of these malignancies but also for developing strategies to improve patient outcomes.

Key Words

Bioinformatics DNA microarrays pancreatic cancer proteomics target discovery serial analysis of gene expression SAGE 

Notes

Acknowledgments

A.M. is supported by an American Association for Cancer Research-PanCAN Career Development Award, the Lustgarten Foundation for Pancreatic Cancer Research, and National Cancer Institute R01CA113669.

References

  1. 1.
    Yeo, T. P., Hruban. R. H., Leach, S. D., et al. (2002) Pancreatic cancer. Curr. Probl. Cancer 26, 176–275.CrossRefPubMedGoogle Scholar
  2. 2.
    Takaori, K., Hruban, R. H., Maitra, A., and Tanigawa, N. (2004) Pancreatic intraepithelial neoplasia. Pancreas 28, 257–262.CrossRefPubMedGoogle Scholar
  3. 3.
    Kern, S. E., Hruban, R. H., Hidalgo, M., and Yeo, C. J. (2002) An introduction to pancreatic adenocarcinoma genetics, pathology and therapy. Cancer Biol. Ther. 1, 607–613.PubMedGoogle Scholar
  4. 4.
    Louvet, C., Andre, T., Lledo, G., et al. (2002) Gemcitabine combined with oxaliplatin in advanced pancreatic adenocarcinoma: final results of a GERCOR multicenter phase II study. J. Clin. Oncol. 20, 1512–1518.CrossRefPubMedGoogle Scholar
  5. 5.
    Hruban, R. H., Iacobuzio-Donahue, C., Wilentz, R. E., Goggins, M., and Kern, S. E. (2001) Molecular pathology of pancreatic cancer. Cancer J. 7, 251–258.PubMedGoogle Scholar
  6. 6.
    Li, D., Xie, K., Wolff, R., and Abbruzzese, J. L. (2004) Pancreatic cancer. Lancet 363, 1049–1057.CrossRefPubMedGoogle Scholar
  7. 7.
    Goggins, M., Hruban, R. H., and Kern, S. E. (2000) BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am. J. Pathol. 156, 1767–1771.CrossRefPubMedGoogle Scholar
  8. 8.
    Day, J. D., Digiuseppe, J. A., Yeo, C., et al. (1996) Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum. Pathol. 27, 119–124.CrossRefPubMedGoogle Scholar
  9. 9.
    Caldas, C., Hahn, S. A., da Costa, L. T., et al. (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 8, 27–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Hahn, S. A., Schutte, M., Hoque, A. T., et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353.CrossRefPubMedGoogle Scholar
  11. 11.
    Schutte, M., Hruban, R. H., Geradts, J., et al. (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 57, 3126–3130.PubMedGoogle Scholar
  12. 12.
    Berman, D. M., Karhadkar, S. S., Maitra, A., et al. (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851.CrossRefPubMedGoogle Scholar
  13. 13.
    Miyamoto, Y., Maitra, A., Ghosh, B., et al. (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576.CrossRefPubMedGoogle Scholar
  14. 14.
    Iacobuzio-Donahue, C. A., Maitra, A., Shen-Ong, G. L., et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathol. 160, 1239–1249.CrossRefPubMedGoogle Scholar
  15. 15.
    Iacobuzio-Donahue, C. A., Maitra, A., Olsen, M., et al. (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol. 162, 1151–1162.CrossRefPubMedGoogle Scholar
  16. 16.
    Iacobuzio-Donahue, C. A., Ashfaq, R., Maitra, A., et al. (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 63, 8614–8622.PubMedGoogle Scholar
  17. 17.
    Gronborg, M., Bunkenborg, J., Kristiansen, T. Z., et al. (2004) Comprehensive proteomic analysis of human pancreatic juice. J. Proteome Res. 3, 1042–1055.CrossRefPubMedGoogle Scholar
  18. 18.
    Ryu, B., Jones, J., Blades, N. J., et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 62, 819–826.PubMedGoogle Scholar
  19. 19.
    Argani, P., Rosty, C., Reiter, R. E., et al. (2001) Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324.PubMedGoogle Scholar
  20. 20.
    Argani, P., Iacobuzio-Donahue. C., Ryu. B., et al. (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res. 7, 3862–3868.PubMedGoogle Scholar
  21. 21.
    Rosty, C., Christa, L., Kuzdzal, S., et al. (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 62, 1868–1875.PubMedGoogle Scholar
  22. 22.
    Koopmann, J., Fedarko, N. S., Jain, A., et al. (2004) Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 13, 487–491.PubMedGoogle Scholar
  23. 23.
    Shalon, D., Smith, S. J., and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645.CrossRefPubMedGoogle Scholar
  24. 24.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.CrossRefPubMedGoogle Scholar
  25. 25.
    Pandey, A. and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837–846.CrossRefPubMedGoogle Scholar
  26. 26.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  27. 27.
    DeRisi, J., Penland, L., Brown, P. O., et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.CrossRefPubMedGoogle Scholar
  28. 28.
    Pollack, J. R. (2002) Comparative genomic hybridization using cDNA microarrays. In: DNA microarrays: A Molecular Cloning Manual, Sambrook, J., ed. Cold Spring Harbor Press, pp. 363–369.Google Scholar
  29. 29.
    Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.CrossRefPubMedGoogle Scholar
  30. 30.
    Polyak, K. and Riggins, G. J. (2001) Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J. Clin. Oncol. 19, 2948–2958.PubMedGoogle Scholar
  31. 31.
    Kenzelmann, M. and Muhlemann, K. (1999) Substantially enhanced cloning efficiency of SAGE (serial analysis of gene expression) by adding a heating step to the original protocol. Nucleic Acids Res. 27, 917–918.CrossRefPubMedGoogle Scholar
  32. 32.
    Angelastro, J. M., Klimaschewski, L. P., and Vitolo, O. V. (2000) Improved NlaIII digestion of PAGE-purified 102 bp ditags by addition of a single purification step in both the SAGE and microSAGE protocols. Nucleic Acids Res. 28, e62.CrossRefPubMedGoogle Scholar
  33. 33.
    Datson, N. A., van der Perk-de Jong, J., van den Berg, M. P., de Kloet, E. R., and Vreugdenhil, E. (1999) MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 27, 1300–1377.CrossRefPubMedGoogle Scholar
  34. 34.
    Peters, D. G., Kassam, A. B., Yonas, H., O’Hare, E. H., Ferrell, R. E., and Brufsky, A. M. (1999) Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. Nucleic Acids Res. 27, e39.CrossRefPubMedGoogle Scholar
  35. 35.
    Foss, C. A., Maitra, A., Iacobuzio-Donahue, C., Kern, S., snf Pomper, M. G. (2004) [125I]anti-Claudin 4 and [125I]anti-PSCA monoclonal antibodies as novel imaging agents for human pancreatic cancer in xenograft-bearing mice, In Proceedings of the Third Annual Meeting of the Society for Molecular Imaging, St. Louis, MO.Google Scholar
  36. 36.
    Hassan, R., Bera, T., and Pastan, I. (2004) Mesothelin: a new target for immunotherapy. Clin. Cancer Res. 10, 3937–3942.CrossRefPubMedGoogle Scholar
  37. 37.
    Thomas, A. M., Santarsiero, L. M., Lutz, E. R., et al. (2004) Mesothelinspecific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J. Exp. Med. 200, 297–306.CrossRefPubMedGoogle Scholar
  38. 38.
    Rosty, C. and Goggins, M. (2002) Early detection of pancreatic carcinoma. Hematol. Oncol. Clin. North Am. 16, 37–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Nichols, L. S., Ashfaq, R., and Iacobuzio-Donahue, C. A. (2004) Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. Am. J. Clin. Pathol. 121, 226–230.CrossRefPubMedGoogle Scholar
  40. 40.
    Michl, P., Buchholz, M., Rolke, M., et al. (2001) Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterology 121, 678–684.CrossRefPubMedGoogle Scholar
  41. 41.
    Offner, S., Hekele, A., Teichmann, U., et al. (2005) Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol. Immunother. 54, 431–445.CrossRefPubMedGoogle Scholar
  42. 42.
    Tuteja, R. and Tuteja, N. (2004) Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools. Bioessays 26, 916–922.CrossRefPubMedGoogle Scholar
  43. 43.
    Lash, A. E., Tolstoshev, C. M.,Wagner, L., et al. (2000) SAGEmap: a public gene expression resource. Genome Res. 10, 1051–1060.CrossRefPubMedGoogle Scholar
  44. 44.
    Lal, A., Lash, A. E., Altschul, S. F., et al. (1999) A public database for gene expression in human cancers. Cancer Res. 59, 5403–5407.PubMedGoogle Scholar
  45. 45.
    Wolters, D. A., Washburn, M. P., and Yates, J. R., 3rd. (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690.CrossRefPubMedGoogle Scholar
  46. 46.
    Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.CrossRefPubMedGoogle Scholar
  47. 47.
    Switzer, R. C., 3rd, Merril, C. R., and Shifrin, S. (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 98, 231–237.CrossRefPubMedGoogle Scholar
  48. 48.
    Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.CrossRefPubMedGoogle Scholar
  49. 49.
    Rabilloud, T., Carpentier, G., and Tarroux, P. (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9, 288–291.CrossRefPubMedGoogle Scholar
  50. 50.
    Ishihama,Y., Rappsilber, J., Andersen, J. S., and Mann, M. (2002) Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A 979, 233–239.CrossRefPubMedGoogle Scholar
  51. 51.
    Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Robert M. Beaty
    • 1
  • Mads Gronborg
    • 2
    • 3
  • Jonathan R. Pollack
    • 4
  • Anirban Maitra
    • 4
  1. 1.Department of Pathology, The Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimore
  2. 2.McKusick-Nathans Institute of Genetic MedicineUniversity of Southern DenmarkOdenseDenmark
  3. 3.Departments of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
  4. 4.Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center and McKusick-Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimore

Personalised recommendations