Skip to main content
Book cover

C. elegans pp 175–192Cite as

Electrophysiological Analysis of Neuronal and Muscle Function in C. elegans

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 351))

Abstract

The nematode Caenorhabditis elegans provides numerous experimental advantages for the identification and characterization of genes required for the function of the nervous system. These advantages include forward and reverse genetic tractability, a relatively simple body plan with an invariant cellular lineage, and a fully sequenced and well-annotated genome. However, one limitation of C. elegans is the relative scarcity of electrophysiological data from excitable cells. To address this limitation, high-resolution cellular techniques for probing the roles of specific gene products in the C. elegans nervous system have been recently developed. This chapter will provide an overview of the technical requirements for patch-clamp electrophysiological analysis of C. elegans neurons and muscle cells, as well as provide some illustrative examples of insights gained from the pairing of electrophysiological techniques with molecular and genetic analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. Roy. Soc. (Lond.) B, 314, 1–340.

    Article  Google Scholar 

  2. De Bono, M. and Maricq, A. V. (2005) Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 28, 451–501.

    Article  PubMed  Google Scholar 

  3. Francis, M. M., Mellem, J. E., and Maricq, A. V. (2003) Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci. 26, 90–99.

    Article  PubMed  CAS  Google Scholar 

  4. Raizen, D. M. and Avery, L. (1994) Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495.

    Article  PubMed  CAS  Google Scholar 

  5. Avery, L., Raizen, D., and Lockery, S. (1995) Electrophysiological methods Methods Cell Biol. 48, 251–269.

    Article  PubMed  CAS  Google Scholar 

  6. Saifee, O., Wei, L., and Nonet, M. L. (1998) The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol. Biol. Cell 9, 1235–1252.

    PubMed  CAS  Google Scholar 

  7. Nonet, M. L., Staunton, J. E., Kilgard, M. P., et al. (1997) Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073.

    PubMed  CAS  Google Scholar 

  8. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B., and Wei, L. (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J. Neurosci. 18, 70–80.

    PubMed  CAS  Google Scholar 

  9. Willson, J., Amliwala, K., Davis, A., et al. (2004) Latrotoxin receptor signaling engages the UNC-13-dependent vesicle-priming pathway in C. elegans. Curr. Biol. 14, 1374–1379.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, R. Y., Lobel, L., Hengartner, M., Horvitz, H. R., and Avery, L. (1997) Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. Embo. J. 16, 6066–6076.

    Article  PubMed  CAS  Google Scholar 

  11. Dent, J. A., Davis, M. W., and Avery, L. (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. Embo. J. 16, 5867–5879.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z. W., Saifee, O., Nonet, M. L., and Salkoff, L. (2001) SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881.

    Article  PubMed  CAS  Google Scholar 

  13. Starich, T. A., Lee, R. Y., Panzarella, C., Avery, L., and Shaw, J. E. (1996) eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell-cell coupling. J. Cell Biol. 134, 537–548.

    Article  PubMed  CAS  Google Scholar 

  14. Pemberton, D. J., Franks, C. J., Walker, R. J., and Holden-Dye, L. (2001) Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the function of the native receptor. Mol. Pharmacol. 59, 1037–1043.

    PubMed  CAS  Google Scholar 

  15. Davis, M. W., Somerville, D., Lee, R. Y., Lockery, S., Avery, L., and Fambrough, D. M. (1995) Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function. J. Neurosci. 15, 8408–8418.

    PubMed  CAS  Google Scholar 

  16. Franks, C. J., Pemberton, D., Vinogradova, I., Cook, A., Walker, R. J., and Holden-Dye, L. (2002) Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. J. Neurophysiol. 87, 954–961.

    PubMed  CAS  Google Scholar 

  17. Rogers, C., Reale, V., Kim, K., et al. (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat. Neurosci. 6, 1178–1185.

    Article  PubMed  CAS  Google Scholar 

  18. Neher, E. and Sakmann, B. (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 779–802.

    Article  Google Scholar 

  19. Goodman, M. B., Hall, D. H., Avery, L., and Lockery, S. R. (1998) Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772.

    Article  PubMed  CAS  Google Scholar 

  20. Richmond, J. E. and Jorgensen, E. M. (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797.

    Article  PubMed  CAS  Google Scholar 

  21. Sakmann, B. and Neher, E. (1995) Single-Channel Recording, 2nd Ed., Kluwer Academic/Plenum Publishers, New York, NY.

    Google Scholar 

  22. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  23. Mellem, J. E., Brockie, P. J., Zheng, Y., Madsen, D. M., and Maricq, A. V. (2002) Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36, 933–944.

    Article  PubMed  CAS  Google Scholar 

  24. Brockie, P. J., Mellem, J. E., Hills, T., Madsen, D. M., and Maricq, A. V. (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617–630.

    Article  PubMed  CAS  Google Scholar 

  25. Zheng, Y., Mellem, J. E., Brockie, P. J., Madsen, D. M., and Maricq, A. V. (2004) SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 427, 451–457.

    Article  PubMed  CAS  Google Scholar 

  26. Goodman, M. B. and Lockery, S. R. (2000) Pressure polishing: a method for re-shaping patch pipettes during fire polishing. J. Neurosci. Methods 100, 13–15.

    Article  PubMed  CAS  Google Scholar 

  27. O’Hagan, R., Chalfie, M., and Goodman, M. B. (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50.

    Article  PubMed  Google Scholar 

  28. Hamill, O. P., Marty, E., Neher, B., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  29. Santi, C. M., Yuan, A., Fawcett, G., et al. (2003) Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100, 14,391–14,396.

    Article  PubMed  CAS  Google Scholar 

  30. Jospin, M., Mariol, M. C., Segalat, L., and Allard, B. (2002) Characterization of K+ currents using an in situ patch clamp technique in body wall muscle cells from Caenorhabditis elegans. J. Physiol. 544, 373–384.

    Article  PubMed  CAS  Google Scholar 

  31. Jospin, M., Jacquemond, V., Mariol, M. C., Segalat, L., and Allard, B. (2002) The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J. Cell Biol. 159, 337–348.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan, A., Santi, C. M., Wei, A., et al. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773.

    Article  PubMed  CAS  Google Scholar 

  33. Schuske, K., Beg, A. A., and Jorgensen, E. M. (2004) The GABA nervous system in C. elegans. Trends Neurosci, 27, 407–414.

    Article  PubMed  CAS  Google Scholar 

  34. Rand, J. B., Duerr, J. S., and Frisby, D. L. (2000) Neurogenetics of vesicular transporters in C. elegans. Faseb. J. 14, 2414–2422.

    Article  PubMed  CAS  Google Scholar 

  35. Bamber, B. A., Beg, A. A., Twyman, R. E., and Jorgensen, E. M. (1999) The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359.

    PubMed  CAS  Google Scholar 

  36. Bamber, B. A., Richmond, J. E., Otto, J. F., and Jorgensen, E. M. (2005) The composition of the GABA receptor at the Caenorhabditis elegans neuromuscular junction. Br. J. Pharmacol. 144, 502–509.

    Article  PubMed  CAS  Google Scholar 

  37. Touroutine, D., Fox, R. M., Von Stetina, S. E., Burdina, A., Miller, D. M. 3rd, Richmond, J. E. (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J. Biol. Chem. 280, 27,013–27,021.

    Article  PubMed  CAS  Google Scholar 

  38. Francis, M. M., Evans, S. P., Jensen, M., et al. (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16 mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46, 581–594.

    Article  PubMed  CAS  Google Scholar 

  39. Fleming, J. T., Squire, M. D., Barnes, T. M., et al. (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci. 17, 5843–5857.

    PubMed  CAS  Google Scholar 

  40. Culetto, E., Baylis, H. A., Richmond, J. E., et al. (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J. Biol. Chem. 279, 42,476–42,483.

    Article  PubMed  CAS  Google Scholar 

  41. Towers, P. R., Edwards, B., Richmond, J. E., and Sattelle, D. B. (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J. Neurochem. 93, 1–9.

    Article  PubMed  CAS  Google Scholar 

  42. Schuske, K. R., Richmond, J. E., Matthies, D.S., et al. (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762.

    Article  PubMed  CAS  Google Scholar 

  43. Weimer, R. M., Richmond, J. E., Davis, W. S., Hadwiger, G., Nonet, M. L., and Jorgensen, E. M. (2003) Defects in synaptic vesicle docking in unc-18 mutants Nat. Neurosci. 6, 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  44. Richmond, J. E., Davis, W. S., and Jorgensen, E. M. (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964.

    Article  PubMed  CAS  Google Scholar 

  45. Koushika, S. P., Richmond, J. E., Hadwiger, G., Weimer, R. M., Jorgensen, E. M., and Nonet, M. L. (2001) A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005.

    Article  PubMed  CAS  Google Scholar 

  46. Gally, C., Eimer, S., Richmond, J. E., and Bessereau, J. L. (2004) A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature 431, 578–582.

    Article  PubMed  CAS  Google Scholar 

  47. Richmond, J. E., Weimer, R. M., and Jorgensen, E. M. (2001) An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, H., Rogers, M. J., Richmond, J. E., and McIntire, S. L. (2004) SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans. Nature 430, 891–896.

    Article  PubMed  CAS  Google Scholar 

  49. Davies, A. G., Pierce-Shimomura, J. T., Kim, H., et al. (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666.

    Article  PubMed  CAS  Google Scholar 

  50. Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J., and Lockery, S. R. (2001) The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694–698.

    Article  PubMed  CAS  Google Scholar 

  51. Maricq, A. V., Peckol, E., Driscoll, M., and Bargmann, C. I. (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378, 78–81.

    Article  PubMed  CAS  Google Scholar 

  52. Hart, A. C., Sims, S., and Kaplan, J. M. (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85.

    Article  PubMed  CAS  Google Scholar 

  53. Brockie, P. J., Mellem, J. E., Hills, T., Madsen, D. M., and Maricq, A. V. (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617–630.

    Article  PubMed  CAS  Google Scholar 

  54. Huang, M. and Chalfie, M. (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470.

    Article  PubMed  CAS  Google Scholar 

  55. Christensen, M., Estevez, A., Yin, X., et al. (2002) A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514.

    Article  PubMed  CAS  Google Scholar 

  56. Estevez, A. Y., Roberts, R. K., and Strange, K. (2003) Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J. Gen. Physiol. 122, 207–223.

    Article  PubMed  CAS  Google Scholar 

  57. Dal Santo, P., Logan, M. A., Chisholm, A. D., and Jorgensen, E. M. (1999) The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98, 757–767.

    Article  CAS  Google Scholar 

  58. Carvelli, L., McDonald, P. W., Blakely, R. D., and Defelice, L. J. (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. USA 101, 16,046–16,051.

    Article  PubMed  CAS  Google Scholar 

  59. Park, K. H., Hernandez, L., Cai, S. Q., Wang, Y., and Sesti, F. (2005) A family of K+ channel ancillary subunits regulate taste sensitivity in C. elegans. J. Biol. Chem. 280, 21,893–21,899.

    Article  PubMed  CAS  Google Scholar 

  60. Bianchi, L., Kwok, S. M., Driscoll, M., and Sesti, F. (2003) A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J. Biol. Chem. 278, 12,415–12,424.

    Article  PubMed  CAS  Google Scholar 

  61. Okkema, P. G., Harrison, S. W., Plunger, V., Aryana, A., and Fire, A. (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135, 385–404.

    PubMed  CAS  Google Scholar 

  62. Brockie, P. J., Madsen, D. M., Zheng, Y., Mellem, J., and Maricq, A. V. (2001) Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J. Neurosci. 21, 1510–1522.

    PubMed  CAS  Google Scholar 

  63. Miller, D. M., 3rd and Niemeyer, C. J. (1995) Expression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input. Development 121, 2877–2886.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Francis, M.M., Maricq, A.V. (2006). Electrophysiological Analysis of Neuronal and Muscle Function in C. elegans . In: Strange, K. (eds) C. elegans. Methods in Molecular Biology, vol 351. Humana Press. https://doi.org/10.1385/1-59745-151-7:175

Download citation

  • DOI: https://doi.org/10.1385/1-59745-151-7:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-597-2

  • Online ISBN: 978-1-59745-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics