Skip to main content

Fluorescent Reporter Methods

  • Protocol
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 351))

Abstract

The identification and cloning of the green fluorescent protein (GFP) from jellyfish marks the beginning of a new era of fluorescent reporters. In Caenorhabditis elegans, genetically encoded markers like the fluorescent proteins of the GFP family became the reporter of choice for gene expression studies and protein localization. The small size and transparency of the worm allows the visualization of in vivo dynamics, which increases the number of potential applications for fluorescent reporters tremendously. In combination with subcellular tags, GFP can be used to label subcellular structures like synapses allowing novel approaches to study developmental processes like synapse formation. Other fluorescent labels like small organic dyes, which are in widespread use in cell culture systems, are rarely used in C. elegans owing to difficulties in applying these labels through the impenetrable cuticle or eggshell of the animal. A notable exception is the use of lipophilic dyes, which are taken up by certain sensory neurons in the intact animal and can be introduced into the embryo after puncturing of the egg shell. This chapter covers the use of fluorescent dyes and fluorescent proteins in C. elegans. Emphasis is placed on microscopic techniques including wide field and confocal microscopy as well as time-lapse recordings. The use of fluorescent proteins as transgenic markers and image processing of fluorescence images are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  2. Cubitt, A.B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    Article  PubMed  CAS  Google Scholar 

  3. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  4. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  5. Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, S., Ma, C., and Chalfie, M. (2004) Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137–144.

    Article  PubMed  CAS  Google Scholar 

  7. Ghosh, I., Hamilton, A. D., and Regan, L. (2000) Antiparallel leucine zipper-directed protein reassembly: application to green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659.

    Article  CAS  Google Scholar 

  8. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.

    Article  PubMed  CAS  Google Scholar 

  9. Wood, W. B. (1998) The Nematode Caenorhabditis elegans, Vol. 17, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Shelton, C. A. and Bowerman, B. (1996) Time-dependent responses to glp-1-mediated inductions in early C. elegans embryos. Development 122, 2043–2050.

    PubMed  CAS  Google Scholar 

  11. Oegema, K., Desai, A., Rybina, S., Kirkham, M., and Hyman, A. A. (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell. Biol. 153, 1209–1226.

    Article  PubMed  CAS  Google Scholar 

  12. Mohler, W.A. and White, J. G. (1998) Stereo-4-D reconstruction and animation from living fluorescent specimens. Biotechniques 24, 1006–1012.

    PubMed  CAS  Google Scholar 

  13. Raich, W.B., Agbunag, C., and Hardin, J. (1999) Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  14. Kramer, J. M., French, R. P., Park, E. C., and Johnson, J. J. (1990) The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10, 2081–2089.

    PubMed  CAS  Google Scholar 

  15. Granato, M., Schnabel, H., and Schnabel, R. (1994) pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res. 22, 1762–1763.

    Article  PubMed  CAS  Google Scholar 

  16. Miller, D. M., Shen, M. M., Shamu, C. E., et al. (1992) C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons. Nature 355, 841–845.

    Article  PubMed  CAS  Google Scholar 

  17. Clark, S. G., Lu, X., and Horvitz, H. R. (1994) The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997.

    PubMed  CAS  Google Scholar 

  18. Huang, L. S., Tzou, P., and Sternberg, P. W. (1994) The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 5, 395–411.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Hutter, H. (2006). Fluorescent Reporter Methods. In: Strange, K. (eds) C. elegans. Methods in Molecular Biology, vol 351. Humana Press. https://doi.org/10.1385/1-59745-151-7:155

Download citation

  • DOI: https://doi.org/10.1385/1-59745-151-7:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-597-2

  • Online ISBN: 978-1-59745-151-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics