C. elegans pp 265-273 | Cite as

In Vitro Culture of C. elegans Somatic Cells

  • Kevin Strange
  • Rebecca Morrison
Part of the Methods in Molecular Biology book series (MIMB, volume 351)

Abstract

Because of technical hurdles, large-scale cell culture methods have not been widely exploited until recently for the study of Caenorhabditis elegans. Culturing differentiated cells from larvae and adult worms is probably not technically feasible because of difficulties in removing the animal’s cuticle and dissociating cells. In contrast, large numbers of developing embryo cells can be isolated relatively easily. When placed in culture, embryo cells undergo terminal differentiation within 24 h. Cultured embryo cells have been used recently to characterize ion channel function and regulation and to determine cell specific gene expression patterns. This chapter will provide a detailed description of the methods for isolating and culturing C. elegans embryo cells.

Key Words

Cell culture patch clamp embryo cells RNA interference 

References

  1. 1.
    Barr, M. M. (2003) Super models. Physiol. Genomics 13, 15–24.PubMedGoogle Scholar
  2. 2.
    Strange, K. (2003) From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. Physiol. Rev. 83, 377–415.PubMedGoogle Scholar
  3. 3.
    Bloom, L. (1993) Genetic and molecular analysis of genes required for axon outgrowth in Caenorhabditis elegans, Massachusetts Institute of Technology, PhD thesis, Boston, MA, pp. 1–412.Google Scholar
  4. 4.
    Buechner, M., Hall, D.H., Bhatt, H., and Hedgecock, E. M. (1999) Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev. Biol. 214, 227–241.PubMedCrossRefGoogle Scholar
  5. 5.
    Christensen, M. and Strange, K. (2001) Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J. Biol. Chem. 276, 45,024–45,030.PubMedCrossRefGoogle Scholar
  6. 6.
    Christensen, M., Estevez, A. Y., Yin, X. M., et al. (2002) A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514.PubMedCrossRefGoogle Scholar
  7. 7.
    Estevez, A. Y., Roberts, R. K., and Strange, K. (2003) Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J. Gen. Physiol. 122, 207–223.PubMedCrossRefGoogle Scholar
  8. 8.
    Yuan, A., Santi, C. M., Wei, A., et al. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773.PubMedCrossRefGoogle Scholar
  9. 9.
    Carvelli, L., McDonald, P. W., Blakely, R. D., and DeFelice, L. J. (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. USA 101, 16,046–16,051.PubMedCrossRefGoogle Scholar
  10. 10.
    Park, K. H., Hernandez, L., Cai, S. Q., Wang, Y., and Sesti, F. (2005) A family of K+ channel ancillary subunits regulate taste sensitivity in Caenorhabditis elegans. J. Biol. Chem. 280, 21,893–21,899.PubMedCrossRefGoogle Scholar
  11. 11.
    Estevez, A. Y. and Strange, K. (2005) Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells. J. Physiol. 567, 239–251.PubMedCrossRefGoogle Scholar
  12. 12.
    Bianchi, L., Gerstbrein, B., Frokjaer-Jensen, C., et al. (2004) The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337–1344.PubMedCrossRefGoogle Scholar
  13. 13.
    Suzuki, H., Kerr, R., Bianchi, L., et al. (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017.PubMedCrossRefGoogle Scholar
  14. 14.
    Teramoto, T., Lambie, E. J., and Iwasaki, K. (2005) Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab. 1, 343–354.PubMedCrossRefGoogle Scholar
  15. 15.
    Colosimo, M. E., Brown, A., Mukhopadhyay, S., et al. (2004) Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr. Biol. 14, 2245–2251.PubMedCrossRefGoogle Scholar
  16. 16.
    Cinar, H., Keles, S., and Jin, Y. (2005) Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr. Biol. 15, 340–346.PubMedCrossRefGoogle Scholar
  17. 17.
    Fox, R. M., Von Stetina, S. E., Barlow, S. J., et al. (2005) A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6, 42.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Kevin Strange
    • 1
    • 2
    • 3
  • Rebecca Morrison
    • 1
  1. 1.Department of AnesthesiologyVanderbilt University Medical CenterNashville
  2. 2.Department of Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashville
  3. 3.Department of PharmacologyVanderbilt University Medical CenterNashville

Personalised recommendations