Skip to main content

Pharmacogenetics

Defining the Genetic Basis of Drug Action and Inositol Trisphosphate Analysis

  • Protocol
Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 346))

Abstract

Medicinal drugs do not always have clearly understood mechanisms of action, especially as regards psychiatric treatment. Identification of genes involved in drug resistance is an important step toward elucidating the genetic basis of disease and the molecular mechanism of drug action. However, this approach is impractical in higher animals, as ablation and screening of every gene in an animal is not currently possible. Dictyostelium has proven a good model system for molecular pharmacological research as a result of its genetic tractability, ease of gene knockout, and creation of isogenic lines. In this system, we have identified genes that confer resistance to bipolar disorder drugs. This work has implicated inositol (1,4,5) trisphosphate (InsP3) signaling as a common mechanism of action for these drugs in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, R. S. (2005) Pharmacogenetics in model systems: defining a common mechanism of action for mood stabilisers. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  2. Williams, R. S., Eames, M., Ryves, W. J., Viggars, J., and Harwood, A. J. (1999) Loss of a prolyl oligopeptidase confers resistance to lithium by elevation of inositol (1,4,5) trisphosphate. EMBO J. 18, 2734–2745.

    Article  PubMed  CAS  Google Scholar 

  3. Williams, R. S., Cheng, L., Mudge, A. W., and Harwood, A. J. (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417, 292–295.

    Article  PubMed  CAS  Google Scholar 

  4. Berridge, M. J., Downes, C. P., and Hanley, M. R. (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411–419.

    Article  PubMed  CAS  Google Scholar 

  5. Leech, A. P., Baker, G. R., Shute, J. K., Cohen, M. A., and Gani, D. (1993) Chemical and kinetic mechanism of the inositol monophosphatase reaction and its inhibition by Li+. Eur. J. Biochem. 212, 693–704.

    Article  PubMed  CAS  Google Scholar 

  6. York, J. D., Ponder, J. W., and Majerus, P. W. (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 92, 5149–5153.

    Article  PubMed  CAS  Google Scholar 

  7. Eickholt, B. J, Towers, G. J., Ryves, W. J., et al. (2005) Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, GSK-3β inhibition and viral replication—a screening approach for new bipolar disorder drugs based on the valproic acid core structure. Mol. Pharmacol. 67, 1–8.

    Article  Google Scholar 

  8. Shaltiel, G., Shamir, A., Shapiro, J., et al. (2004) Valproate decreases inositol biosynthesis. Biol. Psychiatry 56, 868–874.

    Article  PubMed  CAS  Google Scholar 

  9. Keim, M., Williams, R. S., and Harwood, A. J. (2004) An inverse PCR technique to rapidly isolate the flanking DNA of Dictyostelium insertion mutants. Mol. Biotechnol. 26, 221–224.

    Article  PubMed  CAS  Google Scholar 

  10. Abe, T., Langenick, J., and Williams, J. G. (2003) Rapid generation of gene disruption constructs by in vitro transposition and identification of a Dictyostelium protein kinase that regulates its rate of growth and development. Nucleic Acids Res. 31, e107.

    Article  PubMed  Google Scholar 

  11. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  12. Charette, S. J. and Cosson, P. (2004) Preparation of genomic DNA from Dictyostelium discoideum for PCR analysis. Biotechniques 36, 574–575.

    PubMed  CAS  Google Scholar 

  13. Harwood, A. J., Plyte, S. E., Woodgett, J., Strutt, H. and Kay, R. R. (1995) Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell 80, 139–148.

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook, J., Fritsch, E., and Maniatis, T. (2001) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Adley, K.E., Keim, M., Williams, R.S.B. (2006). Pharmacogenetics. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology™, vol 346. Humana Press. https://doi.org/10.1385/1-59745-144-4:517

Download citation

  • DOI: https://doi.org/10.1385/1-59745-144-4:517

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-623-8

  • Online ISBN: 978-1-59745-144-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics