Skip to main content

Actinomycetes (Streptomyces lividans)

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 344))

Abstract

Agrobacterium tumefaciens is best known for its ability to transform plants by delivering the T-DNA that is processed and transferred from the resident Ti plasmid to the recipient plant cells. Less well known is the capacity of this Gram-negative bacterium to transfer its T-DNA into fungi and actinomycetes. Procedures are described on the use of the promiscuous T-DNA transfer system of A. tumefaciens to transform members of the actinomycetes. Integration of the T-DNA derivatives into the Streptomyces chromosome provides opportunities of obtaining valuable mutants of this antibiotic producing soil organism.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bundock, P., Den Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J.J. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214.

    PubMed  CAS  Google Scholar 

  2. Piers, K.L., Heath, J.D., Liang, X., Stephens, K.M., and Nester, E.W. (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93, 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  3. Shikorski, R.S., Michaud, W., Levin, H.L., Boeke, J.D., and Heiter, P. (1990) Trans-kingdom promiscuity. Nature 345, 581–582.

    Article  Google Scholar 

  4. Bundock, P., Mróczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J.J. (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261, 115–121.

    Article  PubMed  CAS  Google Scholar 

  5. DeGroot, M.J.A., Bundock, P., Hooykaas, P.J.J., and Beijersbergen, A.G.M. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842.

    Article  CAS  Google Scholar 

  6. Mullins, E.D., Chen, X., Romaine, P., Gaina, R., Geiser, D.M., and Kang, S. (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173–180.

    Article  PubMed  CAS  Google Scholar 

  7. Kelly, B. and Kado, C.I. (1997) Promiscuous gene transfer of Agrobacterium tumefaciens extends to the actinomycete Streptomyces lividans. Amer. Soc. Microbiol. 97th Annu. Mtg. Abstr. p. 417.

    Google Scholar 

  8. Kieser, T. and Hopwood, D.A. (1991) Genetic manipulation of Streptomyces: new integrating vectors and methods for gene replacement. Methods Enzymol. 204, 430–458.

    Article  PubMed  CAS  Google Scholar 

  9. Oh, S.-H. and Chater, K.F. (1997) Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179, 122–127.

    PubMed  CAS  Google Scholar 

  10. Mazodier, P., Petter, R., and Thompson, C. (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171, 3583–3585.

    PubMed  CAS  Google Scholar 

  11. Giebelhaus, L.A., Frost, L., Lanka, E., Gormley, E.P., Davies, J.E., and Leskiw, B. (1996) The Tra2 core of the IncPα plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J. Bacteriol. 178, 6378–6381.

    PubMed  CAS  Google Scholar 

  12. Flett, F., Mersinias, V., and Smith, C.P. (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA restricting Streptomycetes. FEMS Microbiol. Lett. 155, 223–229.

    Article  PubMed  CAS  Google Scholar 

  13. Kelly, B.A. and Kado, C.I. (2002) Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol. Plant Pathol. 3, 125–134.

    Article  PubMed  CAS  Google Scholar 

  14. Dworkin, M.M., Falkow, S., Rosenberg, E., Schleifer K.-H., and Stacebrandt, E. (eds.). (2005) The Prokaryotes, Third Edition, vol. 3, Archaea and Bacteria: Firmicutes, Actinomycetes. Springer, Heidelberg, Germany, p. 998.

    Google Scholar 

  15. Klapwijk, P.M., van Beelen, P., and Schilperoort, R.A. (1979) Isolation of a recombination deficient Agrobacterium tumefaciens mutant. Mol. Gen. Genet. 173, 171–175.

    Article  PubMed  CAS  Google Scholar 

  16. Rogowsky, P.M., Powell, B.S., Shirasu, K., et al. (1990) Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23, 85–106.

    Article  PubMed  CAS  Google Scholar 

  17. Zyprian, E. and Kado, C.I. (1990) Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Mol. Biol. 15, 245–256.

    Article  PubMed  CAS  Google Scholar 

  18. Kado, C.I., Heskett, M.G., and Langley, R.A. (1972) Studies on Agrobacterium tumefaciens: characterization of strains 1D135 and B6, and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor-inducing activity. Physiol. Plant Pathol. 2, 47–57.

    Article  CAS  Google Scholar 

  19. Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J., and Kado, C.I. (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169, 5101–5112.

    PubMed  CAS  Google Scholar 

  20. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (eds.) (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  21. Hopwood, D.A., Bibb, M.J., Chater, K.F., et al. (eds.) (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual, John Innes Foundation, Norwich, UK.

    Google Scholar 

  22. Gallie, D.R., Hagiya, M., and Kado, C.I. (1985) Analysis of Agrobacterium tumefaciens plasmid pTiC58 replication region with a novel high-copy-number derivative. J. Bacteriol. 161, 1034–1041.

    PubMed  CAS  Google Scholar 

  23. Gallie, D.R., Zaitlin, D., Perry, K.L., and Kado, C.I. (1984) Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR. J. Bacteriol. 157, 739–745.

    PubMed  CAS  Google Scholar 

  24. Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kado, C.I., Kelly, B. (2006). Actinomycetes (Streptomyces lividans). In: Wang, K. (eds) Agrobacterium Protocols Volume 2. Methods in Molecular Biology, vol 344. Humana Press. https://doi.org/10.1385/1-59745-131-2:395

Download citation

  • DOI: https://doi.org/10.1385/1-59745-131-2:395

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-843-0

  • Online ISBN: 978-1-59745-131-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics