Skip to main content

Cassava (Manihot esculenta Crantz)

  • Protocol
  • 2366 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 344))

Abstract

During the last three years the generation of stably transformed cassava plants having value-added traits has become a reality. Currently, two Agrobacterium-mediated transformation systems are routinely used to engineer cassava. These systems use either somatic embryos or friable embryogenic calli. This paper presents detailed protocols for the transformation of cassava using primary somatic embryos. The effects of explant types, tissue culture conditions, and bacterial and plasmid related factors on transformation efficiency are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nassar, N.M.A., Santos, E., and David, S. (2000) The transference of apomixis genes from Manihot neusana Nassar to cassava, M. esculenta Crantz. Hereditas 132, 167–170.

    Article  Google Scholar 

  2. Nassar, N.M.A. (1995) Development and selection for apomixis in cassava Manihot esculenta Crantz. Can. J. Plant Sci. 74, 857–858.

    Google Scholar 

  3. Hahn, S.K., Bai, K.V., and Asiedu, R. (1990) Tetraploids, triploids and 2n pollen from diploid interspecific crosses with cassava. Theor. Appl. Genet. 79, 433–439.

    Article  Google Scholar 

  4. Nassar, N.M.A. (2003) Gene flow between cassava, Manihot esculenta Crantz, and wild relatives. Genet. Mol. Res. 2, 334–347.

    PubMed  CAS  Google Scholar 

  5. Munyikwa, T.R.I., Raemakers, C.C.J.M., Schreuder, M., et al. (1998) Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta Crantz). Plant Sci. 135, 87–101.

    Article  CAS  Google Scholar 

  6. Puonti-Kaerlas, J. (1998) Cassava biotechnology. Biotechnol. Genet. Revs. 15, 329–364.

    CAS  Google Scholar 

  7. Taylor, N., Chavarraiga, P., Raemakers, C.C.J.M., Siritunga, D., and Zhang, P. (2004) Development and application of transgenic technologies in cassava. Plant Mol. Biol. 56, 671–688.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, P., Legris, G., Coulin, P., and Puonti-Kaerlas, J. (2000) Production of stably transformed cassava plants via particle bombardment. Plant Cell Rep. 19, 939–945.

    Article  CAS  Google Scholar 

  9. Siritunga, D. and Sayre, R. (2003) Generation of cyanogen-free transgenic cassava. Planta 217, 367–373.

    Article  PubMed  CAS  Google Scholar 

  10. Siritunga, D., Arias-Garzon, D., White, W., and Sayre, R. (2004) Over-expression of hydroxynitrile lyase in transgenic cassava (Manihot esculenta, Crantz) roots accelerates cyanogenesis. Plant Biotech. J. 2, 37–43.

    Article  CAS  Google Scholar 

  11. Siritunga, D. and Sayre, R. (2004) Engineering cyanogens in cassava. Plant Mol. Biol. 56, 661–669.

    Article  PubMed  CAS  Google Scholar 

  12. Franche, C., Bogusz, D., Schöpke, C., Fauquet, C., and Beachy, R.N. (1991) Transient gene expression in cassava using high-velocity microprojectiles. Plant Mol. Biol. 17, 493–498.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, P., Phansiri, S., and Puonti-Kaerlas, J. (2001) Improvement of cassava shoot organogenesis by use of silver nitrate in vitro. Plant Cell Tiss. Org. Cult. 67, 47–54.

    Article  CAS  Google Scholar 

  14. Zhang, P. and Puonti-Kaerlas, J. (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep. 19, 1041–1048.

    Article  CAS  Google Scholar 

  15. Puonti-Kaerlas, J., Li, H.Q., Sautter, C., and Potrykus, I. (1997) Production of transgenic cassava (Manihot esculenta Crantz) via organogenesis and Agrobacterium-mediated transformation. African J. Root Tuber Crops 2, 181–186.

    Google Scholar 

  16. Chavarriaga-Aguirre, P., Schöpke, C., Sangare, A., Fauquet, C.M., and Beachy, R.N. (1993) Transformation of cassava (Manihot esculenta Crantz) embryogenic tissues using Agrobacterium tumefaciens. In: Proceedings of the 1st International Scientific Meeting of the Cassava Biotechnology Network. Cartagena, Colombia, Roca, W.M., Roca and Thro, A.M. eds., CIAT Working Document 123, 222–228.

    Google Scholar 

  17. Msikita, W., Sayre, R.T., White, V.L., and Marks, J. (2002) Influence of explant source, and light on efficiency of Agrobacterium-mediated transformation of cassava. Fifth International Meeting of the Cassava Biotechnology Network. St. Louis, MO., USA. November 4–9.

    Google Scholar 

  18. Konan N.K., Schöpke, C., Carcamo, R., Beachy, R.N., and Fauquet, C. (1997) An efficient mass propagation system for cassava (Manihot esculenta Crantz) based on nodal explants and auxiliary bud-derived meristems. Plant Cell Rep. 16, 444–449.

    CAS  Google Scholar 

  19. Puonti-Kaerlas, J., Frey, P., and Potrykus, I. (1997) Development of a meristem gene transfer technique for cassava. African J. Root & Tuber Crops 2, 175–180.

    Google Scholar 

  20. Woodward, B. and Puonti-Kaerlas. J. (2001) Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica 120, 1–6.

    Article  Google Scholar 

  21. Gresshoff, P. and Doy, C. (1974) Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera. Z. Pflanzenphysiol. 73, 132–141.

    Google Scholar 

  22. Raemakers, K., Schreuder, M., Pereira I., Munyikwa, T., Jacobsen, E., and Visser, R. (2001) Progress made in FEC transformation of cassava. Euphytica 120, 15–24.

    Article  CAS  Google Scholar 

  23. Taylor, N., Masona, M.V., Carcamo, R., Ho, T., Schöpke, C., and Fauquet, C.M (2001) Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120, 25–34.

    Article  CAS  Google Scholar 

  24. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  25. Gonzalez, A.E., Schöpke, C., Taylor, N.J., Beachy, R.N., and Fauquet, C.M. (1998). Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Reports 17, 827–831.

    Article  CAS  Google Scholar 

  26. Reed J., Privalle L., Luann Powell M., et al. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Dev. Biol. Plant 37, 127–136.

    Google Scholar 

  27. Zambre, M., Terryn, N., De Clercq, J., et al. (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216, 580–586.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Msikita, W., Ihemere, U., Siritunga, D., Sayre, R.T. (2006). Cassava (Manihot esculenta Crantz). In: Wang, K. (eds) Agrobacterium Protocols Volume 2. Methods in Molecular Biology, vol 344. Humana Press. https://doi.org/10.1385/1-59745-131-2:13

Download citation

  • DOI: https://doi.org/10.1385/1-59745-131-2:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-843-0

  • Online ISBN: 978-1-59745-131-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics