Perennial Ryegrass (Lolium perenne L.)

  • Fredy Altpeter
Part of the Methods in Molecular Biology book series (MIMB, volume 344)


A protocol that facilitates rapid establishment of Agrobacterium-mediated transformation for perennial ryegrass is described. The synthetic green fluorescent protein (sgfpS65T) reporter gene is introduced in combination with the nptII selectable marker gene into axillary bud derived embryogenic calli of perennial ryegrass (Lolium perenne L.) by co-cultivation with Agrobacterium tumefaciens strain AGL0 harboring binary vector pYF132. Following the co-cultivation calli are cultured for 48 h in liquid callus medium containing timentin at 10°C and 70 rpm, which reduces Agrobacterium overgrowth. Using green fluorescent protein (GFP) as a nondestructive visual marker allows identification of responsive genotypes and transgenic cell clusters at an early stage. GFP screening is combined with paromomycin selection to suppress wild type cells. Transgenic plantlets ready to transfer to soil are obtained within 4 mo of explant culture. Between 8 and 16% of the Agrobacterium-inoculated calli regenerate independent, Southern positive transgenic plants. Reproducibility and efficiency in this perennial ryegrass transformation protocols is controlled by multiple factors including genotype dependent tissue culture and gene transfer response, a short tissue culture-and-selection period and the efficient suppression of Agrobacterium following Agrobacterium-mediated gene transfer.

Key Words

Ryegrass Lolium perenne L. Agrobacterium-mediated gene transfer nptII gfp grass transformation 


  1. 1.
    Watschke, T.L. and Schmidt, R.E. (1992) Ecological aspects of turfgrass communities. In: Waddington, D.V. et al. (eds.) Turfgrass Agron. Monogr. 32, pp 129–174. ASA, CSSA and SSSA Madison, Wi, USA.Google Scholar
  2. 2.
    Xu, J., Schubert, J., and Altpeter, F. (2001) Dissection of RNA mediated virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J. 26, 265–274.PubMedCrossRefGoogle Scholar
  3. 3.
    Spangenberg, G., Wang, Z.-Y., Wu, X.L., Nagel, J., and Potrykus, I. (1995) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci. 108, 209–217.CrossRefGoogle Scholar
  4. 4.
    Dalton, S.J., Bettany, A.J.E., Timms, E., and Morris, P. (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep. 18, 721–726.CrossRefGoogle Scholar
  5. 5.
    Dalton, S.J., Bettany, A.J.E., Timms, E., and Morris, P. (1998) Transgenic plants of Lolium multiflorum, Lolium perenne, Festuca arundinacea and Agrostis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Sci. 132, 31–43.CrossRefGoogle Scholar
  6. 6.
    Wang, G.R., Binding, H., and Posselt, U.K. (1997) Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne L. and Lolium multiflorum Lam. J. Plant Physiol. 151, 83–90.Google Scholar
  7. 7.
    Creemers-Molenaar, J. and Loeffen J.P.M. (1991) Regeneration from protoplasts of perennial ryegrass; progress and applications. In: Fodder Crops Breeding: Achievements, Novel Strategies and Biotechnology, Proceedings of the 16th Meeting of the Fodder Crops Section of Eucarpia. (Den Nijs, A.P.M. and Elgersma, A. eds.) November 16–22, 1990. Wageningen, The Netherlands, pp 123–128.Google Scholar
  8. 8.
    Altpeter, F., Xu, J., and Ahmed, S. (2000) Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars. Mol. Breeding 6, 519–528.CrossRefGoogle Scholar
  9. 9.
    Altpeter, F., Baisakh, N., Beachy, R., et al. (2005) Particle bombardment and the genetic enhancement of crops: Myths and realities. Mol. Breeding 15, 305–327.CrossRefGoogle Scholar
  10. 10.
    Czernilofsky, A.P., Hain, R., Baker, B., and Wirtz, U. (1986) Studies of the structure and functional organization of foreign DNA integrated into the genome of Nicotiana tabacum. DNA 5, 473–482.PubMedCrossRefGoogle Scholar
  11. 11.
    Koncz, C., Martini, N., Mayerhofer, R., et al. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471.PubMedCrossRefGoogle Scholar
  12. 12.
    McKnight, T.D., Lillis, M.T., and Simpson, R.B. (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8, 439–445.CrossRefGoogle Scholar
  13. 13.
    Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Vector carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174.PubMedCrossRefGoogle Scholar
  14. 14.
    Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oriza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng, M., Fry, J.E., Pang, S., et al. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980.PubMedGoogle Scholar
  16. 16.
    Tingay, S., McElroy, D., Kalla, R., et al. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376.CrossRefGoogle Scholar
  17. 17.
    Zhao, Z.-Y., Cai, T., Tagliani, L., et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.PubMedCrossRefGoogle Scholar
  18. 18.
    Yu, T.T., Skinner, D.Z., Liang, G.H., Trick, G.N., Huang, B., and Muthukrishnan, S. (2000) Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133, 229–233.PubMedCrossRefGoogle Scholar
  19. 19.
    Somleva, M.N., Tomaszewski, Z., and Conger, B.V. (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42, 2080–2087.CrossRefGoogle Scholar
  20. 20.
    Toyama, K., Bae C.-H., Kang J.-G., et al. (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol. Cells 16, 19–27.PubMedGoogle Scholar
  21. 21.
    Popelka, J.C. and Altpeter, F. (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breeding 11, 203–211.CrossRefGoogle Scholar
  22. 22.
    Bettany, A.J.E., Dalton, S.J., Timms, E., Manderyck, B., Dhanoa, M.S., and Morris, P. (2003) Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell. Rep. 21, 439–444.Google Scholar
  23. 23.
    Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperpoort, R.A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.CrossRefGoogle Scholar
  25. 25.
    Alt-Mörbe, J., Kühmann, H., and Schröder, J. (1989) Differences in induction of Ti-plasmid virulence genes virG and virD and continued control of virD expression by four external factors. Mol. Plant-Microbe Interact. 2, 301–308.CrossRefGoogle Scholar
  26. 26.
    Usami, S., Okamoto, S., Takebe, I., and Machida, Y. (1988) Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA 85, 3748–3752.PubMedCrossRefGoogle Scholar
  27. 27.
    Nauerby, B., Billing, K., and Wyndaele, R. (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science 123, 169–177.CrossRefGoogle Scholar
  28. 28.
    Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H., and Galbraith, D.W. (1995) Green-flourescent protein as a new vital marker in plant cells. Plant J. 8, 777–784.PubMedCrossRefGoogle Scholar
  29. 29.
    Vain, P., Worland, B., Kohli, A., Snape, J.W., and Christou, P. (1998) The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor. Appl. Genet. 96, 164–169.CrossRefGoogle Scholar
  30. 30.
    Ahlandsberg, S., Sathish, P., Sun, C.X., and Jansson, C. (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol. Plant. 107, 194–200.CrossRefGoogle Scholar
  31. 31.
    Jordan, M.C., (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19, 1069–1075.CrossRefGoogle Scholar
  32. 32.
    Mersereau, M., Pazour, G.J., and Das, A. (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90, 149–151.PubMedCrossRefGoogle Scholar
  33. 33.
    Lazo, G.R., Stein, P.A., and Ludwig, R.A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat. Biotechnol. 9, 963–967.CrossRefGoogle Scholar
  34. 34.
    Christensen, A.H. and Quail, P.H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5, 213–218.CrossRefGoogle Scholar
  35. 35.
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.PubMedCrossRefGoogle Scholar
  36. 36.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15, 473–479.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Fredy Altpeter
    • 1
  1. 1.Agronomy Department, PMCB, Genetics Institute, Laboratory of Molecular Plant PhysiologyUniversity of Florida — IFASGainesville

Personalised recommendations