Coffee (Coffea sp.)

  • Thierry Leroy
  • Edgardo Alpizar
  • Magali Dufour
  • Hervé Etienne
Part of the Methods in Molecular Biology book series (MIMB, volume 344)


Coffee (Coffea sp.) is a perennial plant widely cultivated in many tropical countries. It is a cash crop for millions of small farmers in these areas. As compared with other tree species, coffee has long breeding cycles that make conventional breeding programs time consuming. For that matter, genetic transformation can be an effective technique to introduce a desired trait in an already “elite” variety, or to study a gene function and expression. In this chapter, we describe two Agrobacterium-mediated transformation techniques; the first with A. tumefaciens to introduce an insect resistance gene and the second with A. rhizogenes to study candidate gene expression for nematode resistance in transformed roots.

Key Words

Agrobacterium tumefaciens Agrobacterium rhizogenes insect resistance nematode resistance Bacillus thuringensis Meloidogyne sp. functional genomics 


  1. 1.
    Bertrand, B., Aguilar, G., Santacreo, R., et al. (1997) Comportement d’rides F1 de Coffea arabica pour la vigueur, la production et la fertilité en Amérique centrale. In: ASIC (eds), 17th international colloquium on coffee science, Nairobi (Kenya), 20-25 July 1997, ASIC, Paris (France), pp. 415–423.Google Scholar
  2. 2.
    Etienne, H., Anthony, F., Dussert, S., Fernandez, D., Lashermes, P., and Bertrand, B. (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell. Dev. Biol.-Plant 38, 129–138.CrossRefGoogle Scholar
  3. 3.
    Leroy, T., Montagnon, C., Cilas, C., Yapo, A., Charmetant, P., and Eskes, A.B. (1997) Reciprocal recurrent selection applied to Coffea canephora Pierre. III. Genetic gains and results of first cycle intergroup crosses. Euphytica 95, 347–354.CrossRefGoogle Scholar
  4. 4.
    Capot, J. (1977) L’amélioration du caféier Robusta en Côte d’Ivoire. Café Cacao Thé 21, 233–244.Google Scholar
  5. 5.
    Spiral, J., Leroy, T., Paillard, M., and Petiard, V. (1999) Transgenic Coffee (Coffea species). In: Biotechnology in Agriculture and Forestry, Vol. 44 Transgenic Trees (Bajaj, Y.P.S., ed.), Springer-Verlag, Berlin Heidelberg, pp. 55–76.Google Scholar
  6. 6.
    Guerreiro Filho, O., Penna Medina, F.H., Gonçalves, W., and Carvalho, A. (1990) Melhoramento do cafeeiro: XLIII. Selecao do cafeeiros resistentes ao bichomineiro. Bragantia 49, 291–304.Google Scholar
  7. 7.
    Estruch, J.J., Carozzi, N.B., Desai, N., Duck, N.B., Warren, G.W., and Koziel, M.G. (1997) Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15, 137–141.PubMedCrossRefGoogle Scholar
  8. 8.
    Schuler, T.H., Poppy, G.M., Kerry, B.R., and Denholm, I. (1998) Insect-resistant transgenic plants. Tib. Technol.. 16, 168–175.Google Scholar
  9. 9.
    Guerreiro, O., Denolf, P., Peferoen, M., Decazy, B., Eskes, A.B., and Frutos, R. (1998) Susceptibility of the coffee leaf miner (Perileucoptera spp.) to Bacillus thuringiensis β-endotoxins: a model for transgenic perennial crops resistant to endocarpic pests Curr. Microbiol. 36, 175–179.CrossRefGoogle Scholar
  10. 10.
    Dandekar, A.M., McGranahan, G.H., Vail, P.V., Uratsu, S.L., Leslie, C.A. and Tebbets, J.S. (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131, 181–193.CrossRefGoogle Scholar
  11. 11.
    Surekha, K., Royer, M., Naidu, R., et al. (2002) Bioassay of Bacillus thuringiensis toxins against two major coffee pests, i.e. coffee berry borer (Hypothenemus hampei) and coffee white stem borer (Xylotrechus quadripes). In: SIP, Annual Meeting of the Society for Invertebrate Pathology. 35, 2002/08/18–23, Foz de Iguassu, Brésil, Program and Abstracts, p. 85.Google Scholar
  12. 12.
    Campos, V.P., Sivapalan P., and Gnanapragasam N.C. (1990). Nematode parasites of coffee, cocoa and tea. In: Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture (Luc M., Sikora RA., Bridge, J., eds.), CAB International, Wallingford, UK. pp. 113–126.Google Scholar
  13. 13.
    Noir, S., Anthony, F., Bertrand, B., Combes, M.C., and Lashermes, P. (2003). Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol. 52, 97–103.CrossRefGoogle Scholar
  14. 14.
    Christey, M.C. (2001). Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell. Dev. Biol.-Plant 37, 687–700.CrossRefGoogle Scholar
  15. 15.
    Cadiz, N.M., Vivanco, J.M. and Flores, H.E. (2000). Coculture of Pachyrhizus erosus (L.) hairy roots with rhizobium spp. In vitro Cell. Dev. Biol.-Plant 36, 238–242.CrossRefGoogle Scholar
  16. 16.
    Barton, C.R., Adams, T.L. and Zarowitz, M.A. (1991) Stable transformation of foreign DNA into Coffea arabica plants. In: 14th International Colloquium on Coffee Science (ASIC, eds.) San Francisco (USA), 14–19 July 1991, ASIC, Paris (France), pp. 853–859.Google Scholar
  17. 17.
    Feng, Q., Yang, M.Z., Zheng, X.Q., Zhen, X.S., Pan, N.S., and Chen, Z.L. (1992) Agrobacterium mediated transformation of coffee (Coffea arabica L.). Chn. J. Biotechnol. 8, 255–260.Google Scholar
  18. 18.
    Freire, A.V., Lightfoot, D.A., and Preece, J.E. (1994) Genetic transformation of coffee (Coffea arabica L.) by Agrobacterium spp. Hort. Science 29, 454.Google Scholar
  19. 19.
    Spiral, J. and Pétiard, V. (1993) Développement d’une méthode de transformation appliquée à differentes espèces de caféiers et régénération de plantules transgéniques. In: 15 th International Colloquium on Coffee Science (ASIC, eds.), Montpellier (Fra), 6–11 June 1993, ASIC, Paris (France), pp. 115–122.Google Scholar
  20. 20.
    Spiral, J., Thierry, C., Paillard, M., and Pétiard, V. (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. C.R. Acad. Sci. Paris 316, 1–6.Google Scholar
  21. 21.
    Sugiyama, M., Matsuoka, C., and Takagi, T. (1995) Transformation of coffee with Agrobacterium rhizogenes. In:16 th international colloquium on coffee science (ASIC, eds.), Kyoto (Jap), 9–14 April 1995, ASIC, Paris (France), pp 853–859.Google Scholar
  22. 22.
    Hatanaka, T., Choi, Y.E., Kusano, T. and Sano, H., (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep. 19, 106–110.CrossRefGoogle Scholar
  23. 23.
    Leroy, T., Paillard, M., Royer, M., et al. (1998) Introduction de gènes d’intérêt agronomique dans l’espèce Coffea canephora Pierre par transformation avec Agrobacterium sp. In: 17 th International Colloqium on Coffee Science (ASIC, eds.), Nairobi (Kenya), 20–25 July 1997, ASIC, Paris (France), pp. 439–445.Google Scholar
  24. 24.
    Leroy, T., Henry, A.M., Royer, M., Altosaar, I., Frutos, R., Duris, D., and Philippe, R. (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep. 19, 382–389.CrossRefGoogle Scholar
  25. 25.
    Yasuda, T., Fujii, Y., and Yamaguchi, T. (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol. 26, 595–597.Google Scholar
  26. 26.
    Berthouly, M. and Michaux-Ferrière, N. (1996) High frequency somatic embryogenesis in Coffea canephora. Plant Cell Tissue. Org. Cult. 44, 169–176.CrossRefGoogle Scholar
  27. 27.
    Prakash, N.S., Marques, D.V., Varzea, V.M.P., Silva, M.C., Combes, M.C., and Lashermes, P. (2004). Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into Coffea arabica L. Theor. Appl. Genet. 109, 1311–1317.PubMedCrossRefGoogle Scholar
  28. 28.
    Marraccini, P., Pereira, L.P.P., Ferreira, L.P., et al. (2003) Biochemical and molecular characterization of enzyme controlling sugar metabolism during coffee bean development. ISPMB conference, Barcelona (Spain), 23–28 June 2003, poster S19–14.Google Scholar
  29. 29.
    Marraccini, P., Deshayes, A., Pétiard, V., and Rogers, W.J. (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol. Biochem. 37, 273–282.CrossRefGoogle Scholar
  30. 30.
    Paillard, M., Lashermes, P., and Pétiard, V. (1996) Construction of a molecular linkage map in coffee. Theor. Appl. Genet. 93, 41–47.CrossRefGoogle Scholar
  31. 31.
    Lashermes, P., Combes, M.C., Prakash, N.S., Trouslot, P., Lorieux, M., and Charrier, A. (2001) A genetic linkage map of Coffea canephora: effect of segregation distorsion and analysis of recombination rate in male and female meiosis. Genome 44, 589–595.PubMedCrossRefGoogle Scholar
  32. 32.
    Leroy, T., Dufour, M., Montagnon, C., et al. (2003) Characterisation of the first Coffea canephora coffee-tree BAC library. ISPMB Conference, Barcelona (Spain), 23–28 june 2003, poster S04–17.Google Scholar
  33. 33.
    Leroy, T., Marraccini, P., Dufour, M., et al. (2005) Construction and characterization of a Coffea canephora BAC library: a valuable tool to study genome structure of sucrose biosynthetic genes. Theor. Appl. Genet. III, 1032–1041.Google Scholar
  34. 34.
    Perthuis, B., Pradon, J.L., Montagnon, C., Dufour, M., and Leroy, T. (2005) Stable resistance against leaf miner Leucoptera coffeella expressed by genetically transformed Coffea canephora in a pluriannual field experiment in French Guyana. Euphytica, 44, 324–329.Google Scholar
  35. 35.
    Mugnier, J. (1988). Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Report 7, 9–12.CrossRefGoogle Scholar
  36. 36.
    Kifle, S., Shao, M., Jung, C., Cai, D. (1999). An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulagarisL.). Plant Cell Rep. 18, 514–519.CrossRefGoogle Scholar
  37. 37.
    Bertrand, B., Anthony, F., and Lashermes, P. (2001). Breeding for resistance to Meloidogyne exigua in Coffea arabica by introgression of resistance genes of Coffea canephora. Plant Pathology 50, 637–643.CrossRefGoogle Scholar
  38. 38.
    Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721.PubMedCrossRefGoogle Scholar
  39. 39.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  40. 40.
    Gamborg, O.L., Miller, R.A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.PubMedCrossRefGoogle Scholar
  41. 41.
    Morel, G. and Wetmore, R. (1951) Tissue culture of monocotyledons. Amer. J. Bot. 38, 138–140.CrossRefGoogle Scholar
  42. 42.
    Jouanin, L., Tourneur, J., and Casse-Delbart, F. (1986) Restriction maps and homologies of the three plamids of Agrobacterium rhizogenes strain A4. Plasmid 16, 124–134.PubMedCrossRefGoogle Scholar
  43. 43.
    Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene; splicing of the intron in transgenic plants and its issue in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Gen. 220, 245–250.CrossRefGoogle Scholar
  44. 44.
    Jefferson, R. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.CrossRefGoogle Scholar
  45. 45.
    Dufour, M., Philippe, R., Fenouillet, C., et al. (2002) Analysis of genetically transformed coffee plants (Coffea canephora Pierre) for resistance to coffee leaf miner: bioassays, molecular and immunological analyses. [CD-ROM]. In: 19 th International Colloquium on Coffee Science (ASIC, eds.), Trieste (Italy), 14–18 May 2001. 1 disque optique numérique (CD-ROM). ASIC, Paris (France).Google Scholar
  46. 46.
    Leroy, T., Philippe, R., Royer, M. et al. (2000) Genetically modified coffee-trees for resistance to leaf miner. Analysis of gene expression, resistance to insects and agronomic value. In: 18 th International Colloquium on Coffee Science (ASIC, eds.), Helsinki (Finland), 2–6 August 1999, ASIC, Paris (France), pp. 332–338.Google Scholar
  47. 47.
    Perthuis, B., Philippe, R., Pradon, J.-L., Dufour, M., and Leroy, T. (2002). Premières observations sur la résistance au champ de plantes de Coffea canephora génétiquement modifiées contre la mineuse des feuilles Perileucoptera coffeella Guérin-Méneville. [CD-ROM]. In: 19 th International Colloquium on Coffee Science (ASIC, eds.), Trieste (Italy), 14–18 May 2001. 1 disque optique numérique (CD-ROM). ASIC, Paris (France).Google Scholar
  48. 48.
    Brasileiro, A.C.M., Tourneur, C., Leplé, J.C., Combes, V., and Jouanin, L. (1992) Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res. 1, 133–141.CrossRefGoogle Scholar
  49. 49.
    Kay, R., Chan, A., Daly, M., and McPherson, J. (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Nature 236, 1299–1302.Google Scholar
  50. 50.
    Sardana, R., Dukiandjiev, S., Giband, M., et al. (1996) Construction and rapid testing of synthetic and modified toxin gene sequences CryIA (b&c) by expression in maize endosperm culture. Plant Cell Rep. 15, 677–681.CrossRefGoogle Scholar
  51. 51.
    Van Boxtel, J., Berthouly, M., Carasco, C., and Eskes, A.B. (1995) Transient expression of β-glucuronidase following biolistic delivery of foreign DNA into coffee tissues. Plant Cell Rep. 14, 748–752.CrossRefGoogle Scholar
  52. 52.
    Curie, C., Liboz, T., Bardet, C., et al. (1991) Cis and trans-acting elements involved in the activation of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1α. Nucleic Acids Res. 19, 1305–1310.PubMedCrossRefGoogle Scholar
  53. 53.
    Gallie, D.R. and Kado, C.I. (1989) A translational enhancer derived from tobacco mosaic virus is functionally equivalent to a Shine-Dalgarno sequence. Proc. Natl. Acad. Sci. USA 86, 129–132.PubMedCrossRefGoogle Scholar
  54. 54.
    Samson, N.P., Campa, C., Noirot, M., and de Kochko, A. (2004). Potential use of d-Xylose for coffee plant transformation. In: 20th International Colloquium on Coffee Science (ASIC, eds.), Bangalore (India), October 2004. in pressGoogle Scholar
  55. 55.
    Alpízar, E., Dechamp, E., Royer, M., et al. (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep. in press.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Thierry Leroy
    • 1
  • Edgardo Alpizar
    • 1
  • Magali Dufour
    • 1
  • Hervé Etienne
    • 1
  1. 1.Centre de Coopération Internationale en Recherche Agronomique pour le Développment, Départment des Cultures Pérennes (CIRAD-CP), TA 80/03Montpellier Cedex 5France

Personalised recommendations