Skip to main content

Indian Mustard [Brassica juncea (L.) Czern.]

  • Protocol
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 343))

Summary

All economically important Brassica species have been successfully transformed using Agrobacterium tumefaciens. Although different tissues have been used as explants, hypocotyls remain the most desirable explants for Brassica tissue culture owing to their amenability to regeneration. Young explants excised from 3- to 4-d-old seedlings have exhibited optimal regeneration potential; the addition of adjuvants such as silver nitrate to the selection medium is necessary to achieve high efficiency of transformation. This chapter describes an Agrobacterium-mediated transformation protocol for Indian mustard based on inoculation of hypocotyls. The selectable marker gene used encodes for neomycin phosphotransferase II (nptII), and the selection agent is kanamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barfield, D. G. and Pua, E. C. (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens mediated transformation. Plant Cell Rep. 10, 308–314.

    Article  CAS  Google Scholar 

  2. Moloney, M. M., Walker, J. M., and Sharma, K. K. (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep. 8, 238–242.

    Article  CAS  Google Scholar 

  3. Radke, S. E., Turner, J. C., and Facciotti, D. (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 11, 499–505.

    Article  Google Scholar 

  4. De Block, M., De Brower, D., and Tenning, P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91, 694–701.

    Article  PubMed  Google Scholar 

  5. Gupta, V., Sita, G. L., Shaila, M. S., and Jagannathan, V. (1993) Genetic transformation of Brassica nigra by Agrobacterium based vector and direct plasmid uptake. Plant Cell Rep. 12, 418–421.

    Article  CAS  Google Scholar 

  6. Narasimhulu, S. B., Kirti, P. B., Mohapatra, T., Prakash, S., and Chopra, V. L. (1992) Shoot regeneration in stem explants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata. Plant Cell Rep. 11, 359–362.

    CAS  Google Scholar 

  7. Poulsen, G. B. (1996) Genetic transformation of Brassica. Plant Breed. 115, 209–225.

    Article  CAS  Google Scholar 

  8. Earle, E. D., Metz, T. D., Roush, R. T., and Shelton, A. M. (1996) Advances in transformation technology for vegetable Brassica. Acta Hort. 407, 161–168.

    CAS  Google Scholar 

  9. Cardoza, V. and Stewart, S. N. Jr. (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell. Dev. Biol. 40, 542–551.

    Article  CAS  Google Scholar 

  10. Sharma, K. K., Bhojwani, S. S., and Thorpe, T. A. (1990) Factors affecting high frequency differentiation of shoots and roots from cotyledon explants of Brassica juncea (L.) Czern. Plant Sci. 66, 247–253.

    Article  CAS  Google Scholar 

  11. Hachey, J. E., Sharma, K. K., and Moloney, M. M. (1991) Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro. Plant Cell Rep. 9, 549–554.

    Article  CAS  Google Scholar 

  12. Ono, Y., Takahata, Y., and Kaizuma, N. (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L). Plant Cell Rep. 14, 13–17.

    Article  CAS  Google Scholar 

  13. Yang, M. Z., Jia, S. R., and Pua, E. C. (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tissue Organ Cult. 24, 79–82.

    Article  Google Scholar 

  14. Eapen, S. and George, L. (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver nitrate and silver thiosulfate. Plant Cell Tissue Organ Cult. 51, 229–232.

    Article  CAS  Google Scholar 

  15. Radke, S. E., and rews, B. M., Moloney, M. M., Crouch, M. L., Krid, J. C., and Knauf, V. C. (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Genet. 75, 685–694.

    Article  CAS  Google Scholar 

  16. Klimaszewska, K. and Keller, K. (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult. 4, 183–197.

    Article  CAS  Google Scholar 

  17. Xu, Z. H., Davey, M. R., and Cocking, E. C. (1982) Plant regeneration from root protoplasts of Brassica. Plant Sci. Lett. 24, 117–121.

    Article  Google Scholar 

  18. Glimelius, K. (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol. Plant. 61, 38–44.

    Article  CAS  Google Scholar 

  19. Spangenberg, G., Koop, H. U., Lichter, R., and Schweiger, H. G. (1986) Microculture of single protoplasts of Brassica napus. Physiol. Plant. 66, 1–8.

    Article  CAS  Google Scholar 

  20. Kik, C. and Zaal, M. A. C. M. (1993) Protoplast culture and regeneration from Brassica oleracea ‘rapid cycling’ and other varieties. Plant Cell Tissue Organ Cult. 35, 107–114.

    Article  Google Scholar 

  21. Hu, Q., and erson, S. B., and Hansen, L. N. (1999) Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell Tissue Organ Cult. 59, 189–196.

    Article  Google Scholar 

  22. Ovesna, J., Ptacek, L., and Opatrny, Z. (1993) Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol. Plant. 35, 107–112.

    Article  Google Scholar 

  23. Pental, D., Pradhan, A. K., Sodhi, Y. S., and Mukhopadhyay, A. (1990) Variation amongst Brassica juncea cultivars for regeneration from hypocotyl explants and optimization of conditions for Agrobacterium-mediated genetic transformation. Plant Cell Rep. 12, 462–467.

    Google Scholar 

  24. Sethi, U., Basu, A., and Mukherjee, S. G. (1990) Role of inhibitors in the induction of differentiation in callus cultures of Brassica, Datura and Nicotiana. Plant Cell Rep. 8, 598–600.

    Article  CAS  Google Scholar 

  25. Williams, J., Pink, D. A. C., and Biddington, N. L. (1990) Effect of silver nitrate on long term culture and regeneration of callus from Brassica olearacea var. gemmifera. Plant Cell Tissue Organ Cult. 21, 61–66.

    Article  CAS  Google Scholar 

  26. Chi, G. L., Barfield, D. G., Sim, G. E., and Pua, E. C. (1990) Effect of AgNO3 and aminoethoxyglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep. 9, 195–198.

    Article  CAS  Google Scholar 

  27. Palmer, C. E. (1992) Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant Cell Rep. 11, 541–545.

    Article  CAS  Google Scholar 

  28. Pua, E. C. and Chi, G. L. (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol. Plant. 88, 467–474.

    Article  CAS  Google Scholar 

  29. Mukhopadhyay, A., Arumugam, N., Nandakumar, P. B. A., Pradhan, A. K., Gupta, V., and Pental, D. (1992) Agrobacterium mediated genetic transformation of oilseed Brassica campestris. Transformation efficiency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep. 11, 506–513.

    Article  Google Scholar 

  30. Stachel, S. E., Messens, E., van Montagu, M., and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624–629.

    Article  Google Scholar 

  31. Melchers, L. S., Regensburg-Tuink, A. J. G., Schilperoort, R. A., and Hooykaas, J. J. (1989) Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol. Microbiol. 3, 969–977.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gasic, K., Korban, S.S. (2006). Indian Mustard [Brassica juncea (L.) Czern.]. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 343. Humana Press. https://doi.org/10.1385/1-59745-130-4:281

Download citation

  • DOI: https://doi.org/10.1385/1-59745-130-4:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-536-1

  • Online ISBN: 978-1-59745-130-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics