Peas (Pisum sativum L.)

  • Jan Grant
  • Pauline Cooper
Part of the Methods in Molecular Biology book series (MIMB, volume 343)


In this chapter we describe a robust method for transformation of peas that has been successfully used in our laboratory since 1992. Using immature pea seed collected from field- or greenhouse-grown plants, we have produced transgenic lines for over 30 genotypes including named pea cultivars and advanced breeding lines. This method uses immature cotyledons as the explant, and the transformation efficiency is in the range 0.2 to 13.5% of cotyledons producing at least one independently transformed line. Agrobacterium tumefaciens strains AGL1 and KYRT1 are the most successful in our procedure, and kanamycin, phosphinothricin, and hygromycin are reliable selectable markers. Potentially useful genes have been introduced for pest and disease resistance, altering quality traits, and investigating metabolic pathways and are being studied in transgenic pea lines.

Key Words

Peas Pisum sativum transformation immature cotyledons legumes Agrobacterium tumefaciens transgenic plants 


  1. 1.
    Puonti-Kaerlas, J., Eriksson, T., and Engström, P. (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor. Appl. Genet. 80, 246–252.CrossRefGoogle Scholar
  2. 2.
    Grant, J. E. and Cooper, P. A. (2002) Genetic transformation in pea (Pisum sativum L.), in Focus on Biotechnology, vol. 10B, Applied Genetics of Leguminosae Biotechnology (Jaiwal, P. K. and Singh, R. P., eds.), Kluwer Academic Publishers, The Netherlands, pp. 23–35.Google Scholar
  3. 3.
    Schroeder, H. E., Schotz, A. H., Wardley-Richardson, T., Spencer, D., and Higgins, T. J. V. (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol. 101, 751–757.PubMedCrossRefGoogle Scholar
  4. 4.
    Grant, J. E., Cooper, P. A., McAra, A. E., and Frew, T. J. (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep. 15, 254–258.CrossRefGoogle Scholar
  5. 5.
    Bean, S. J., Gooding, P. S., Mullineaux, P. M., and Davies, D. R. (1997) A simple system for pea transformation. Plant Cell Rep. 16, 513–519.Google Scholar
  6. 6.
    Jones, A. L., Johansen, I. E., Bean, S. J., Bach, I., and Maule, A. J. (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J. Gen. Virol. 79, 3129–3137.PubMedGoogle Scholar
  7. 7.
    Grant, J. E., Cooper, P. A., Gilpin, B. J., Hoglund, S. J., Pither-Joyce, M. D., and Timmerman-Vaughan, G. M. (1998) Kanamycin is effective for selecting transformed peas. Plant Sci. 139, 159–164.CrossRefGoogle Scholar
  8. 8.
    Perrin, Y., Vaquero, C., Gerrard, I., et al. (2000) Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol. Breeding 6(4), 345–352.CrossRefGoogle Scholar
  9. 9.
    Morton, R. L., Schroeder, H. E., Bateman, K. S., Chrispeels, M. J., Armstrong, E., and Higgins, T. J. V. (2000) Bean alpha-amylase inhibitor 1 in transgenic peas(Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc. Natl. Acad. Sci. USA 97, 3820–3825.PubMedCrossRefGoogle Scholar
  10. 10.
    Timmerman-Vaughan, G. M., Pither-Joyce, M. D., Cooper, P. A., et al. (2001) Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci. 41, 846–853.CrossRefGoogle Scholar
  11. 11.
    Grant, J. E., Thomson, L. M. J., Pither-Joyce, M. D., Dale, T. M., and Cooper, P. A. (2003) Influence of Agrobacterium tumefaciens strain on production of transgenic peas (Pisum sativum L.). Plant Cell Rep. 21, 1207–1210.PubMedCrossRefGoogle Scholar
  12. 12.
    Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  14. 14.
    Lazo, G. R., Stein, P. A., and Ludwig, R. A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9, 963–967.PubMedCrossRefGoogle Scholar
  15. 15.
    Thomson, D. and Henry, R. (1995) Single-step protocol for preparation of plant tissue for analysis by PCR. BioTechniques 19, 394–400.PubMedGoogle Scholar
  16. 16.
    Torisky, R. S., Kovacs, L., Avdiushko, S., Newman, J. D., Hunt, A. G., and Collins, G. B. (1997) Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep. 17, 102–108.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jan Grant
  • Pauline Cooper

There are no affiliations available

Personalised recommendations