Binary Vectors and Super-binary Vectors

  • Toshihiko Komari
  • Yoshimitsu Takakura
  • Jun Ueki
  • Norio Kato
  • Yuji Ishida
  • Yukoh Hiei
Part of the Methods in Molecular Biology book series (MIMB, volume 343)

Summary

A binary vector is a standard tool in the transformation of higher plants mediated by Agrobacterium tumefaciens. It is composed of the borders of T-DNA, multiple cloning sites, replication functions for Escherichia coli and A. tumefaciens, selectable marker genes, reporter genes, and other accessory elements that can improve the efficiency of and/or give further capability to the system. A super-binary vector carries additional virulence genes from a Ti plasmid, and exhibits very high frequency of transformation, which is valuable for recalcitrant plants such as cereals. A number of useful vectors are widely circulated. Whereas vectors with compatible selectable markers and convenient cloning sites are usually the top criteria when inserting gene fragments shorter than 15 kb, the capability of maintaining a large DNA piece is more important for consideration when introducing DNA fragments larger than 15 kb. Because no vector is perfect for every project, it is recommended that modification or construction of vectors should be made according to the objective of the experiments. Existing vectors serve as good sources of components.

Key Words

Agrobacterium tumefaciens transformation binary vector super-binary vector 

References

  1. 1.
    Fraley, R. T., Rogers, S. G., and Horsch, R. B. (1986) Genetic transformation in higher plants. Crit. Rev. Plant Sci. 4, 1–46.CrossRefGoogle Scholar
  2. 2.
    Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179-180.Google Scholar
  3. 3.
    Jin, S., Komari, T., Gordon, M. P., and Nester, E. W. (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169, 4417–4425.PubMedGoogle Scholar
  4. 4.
    Park, S. H., Lee, B.-M., Salas, M. G., Srivatanakul, M., and Smith, R. H. (2000) Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor. Appl. Genet. 101, 1015–1020.CrossRefGoogle Scholar
  5. 5.
    Srivatanakul, M., Park, S. H., Salas, M. G., and Smith, R. H. (2000) Additional virulence genes influence transgene expression: transgene copy number, integration pattern and expression. J. Plant Physiol. 157, 685–690.Google Scholar
  6. 6.
    Vain, P., Harvey, A., Worland, B., Ross, S., Snape, J. W., and Lonsdale, D. (2004) The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. Transgenic Res. 13, 593–603.PubMedCrossRefGoogle Scholar
  7. 7.
    Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9, 303–306.CrossRefGoogle Scholar
  8. 8.
    Komari, T. (1989) Transformation of callus cultures of nine plant species mediated by Agrobacterium. Plant Sci. 60, 223–229.CrossRefGoogle Scholar
  9. 9.
    Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.PubMedCrossRefGoogle Scholar
  10. 10.
    Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14, 745–750.CrossRefGoogle Scholar
  11. 11.
    Hellens, R., Mullineaux, P., and Klee, H. (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 10, 446–451.CrossRefGoogle Scholar
  12. 12.
    Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721.PubMedCrossRefGoogle Scholar
  13. 13.
    Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.CrossRefGoogle Scholar
  14. 14.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning, A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  15. 15.
    Yadav, N. S., Vanderleyden, J., Bennett, D. R., Barnes, W. M., and Chilton, M.-D. (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc. Natl. Acad. Sci. USA 79, 6322–6326.PubMedCrossRefGoogle Scholar
  16. 16.
    Peralta, E. G., Hellmiss, R., and Ream, W. (1986) Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumor-inducing plasmid. EMBO J. 5, 1137–1142.PubMedGoogle Scholar
  17. 17.
    Wang, K., Genetello, C., Van Montagu, M., and Zambryski, P. C. (1987) Sequence context of the T-DNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol. Gen. Genet. 338–346.Google Scholar
  18. 18.
    Odell, J. T., Nagy, F., and Chua, N.-H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812.PubMedCrossRefGoogle Scholar
  19. 19.
    Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H. M. (1982) Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1, 561–573.PubMedGoogle Scholar
  20. 20.
    Barker, R. F., Idler, K. B., Thompson, D. V., and Kemp, J. D. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol. Biol. 2, 335–350.CrossRefGoogle Scholar
  21. 21.
    Christensen, A. H., Sharrock, R. A., and Quail, P. H. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang, W., McElroy, D., and Wu, R. (1991) Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell 3, 1155–1165.PubMedCrossRefGoogle Scholar
  23. 23.
    Ishida, Y., Murai, N., Kuraya, Y., et al. (2004) Improved co-transformation of maize with vectors carrying two separate T-DNAs mediated by Agrobacterium tumefaciens. Plant Biotechnol. 21, 57–63.Google Scholar
  24. 24.
    Vasil, I. K. (1996) Phosphinothricin-resistant crops, in Herbicide-Resistant Crops (Duke, S. O., ed.), CRC Press, Boca Raton, FL, pp. 85–91.Google Scholar
  25. 25.
    Pansegrau, W., Lanka, E., Barth, P. T., et al. (1994) Complete nucleotide sequence of Birmingham IncP α plasmids. Compilation and comparative analysis. J. Mol.Biol. 239, 623–663.PubMedCrossRefGoogle Scholar
  26. 26.
    Okumura, M. S. and Kado, C. I. (1992) The region essential for efficient autonomous replication of pSa in Escherichia coli. Mol. Gen. Genet. 235, 55–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Hellens, R. P., Edward, E. A., Leyland, N. R., Bean, S., and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832.PubMedCrossRefGoogle Scholar
  28. 28.
    Jouanin, L., Vilaine, F., d'Enfert, C., and Casse-Delbart, F. (1985) Localization and restriction maps of the replication origin regions of the plasmids of Agrobacterium rhizogenes strain A4. Mol. Gen. Genet. 201, 370–374.CrossRefGoogle Scholar
  29. 29.
    Deblaere, R., Reynaerts, A., Höfte, H., Hernalsteens, J.-P., Leemans, J., and Van Montagu, M. (1987) Vectors for cloning in plant cells. Methods Enzymol. 153, 277–292.CrossRefGoogle Scholar
  30. 30.
    Lemos, M. L. and Crosa, J. H. (1992) Highly preferred site of insertion of Tn7 into the chromosome of Vibrio anguillarum. Plasmid 27, 161–163.PubMedCrossRefGoogle Scholar
  31. 31.
    Fling, M. E., Kopf, J., and Richards, C. (1985) Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3&” (9)-O-nucleotidyltransferase. Nucleic Acids Res. 13, 7095–7106.PubMedCrossRefGoogle Scholar
  32. 32.
    Pang, S.-Z., DeBoer, D. L., Wan, Y., et al. (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol. 112, 893–900.PubMedCrossRefGoogle Scholar
  33. 33.
    Ow, D. W., Wood, K. V., DeLuca, M., de Wet, J. R., Helinski, D. R., and Howell, S. H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  34. 34.
    de Ruijter, N. C. A., Verhees, J., van Leeuwen, W., and van der Krol, A. R. (2003) Evaluation and comparison of the GUS, LUC and GFP reporter system for gene expression studies in plants. Plant Biol. (Stuttg.) 5, 103–115.CrossRefGoogle Scholar
  35. 35.
    Ohta, S., Mita, S., Hattori, T., and Nakamura, K. (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31, 805–813.Google Scholar
  36. 36.
    Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K., and Nakamura, K. (1990) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res. 18, 6767–6770.PubMedCrossRefGoogle Scholar
  37. 37.
    Simpson, G. G. and Filipowicz, W. (1996) Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. 32, 1–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Goderis, I. J. W. M., De Bolle, M. F. C., François, I. E. J. A., Wouters, P. F. J., Broekaert, W. F., and Cammue, B. P. A. (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol. Biol. 50, 17–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Karimi, M., Inze, D., and Depicker, A. (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.PubMedCrossRefGoogle Scholar
  40. 40.
    Curtis, M. D. and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in plantas. Plant Physiol. 133, 462–469.PubMedCrossRefGoogle Scholar
  41. 41.
    van der Fits, L., Deakin, E. A., Hoge, J. H. C., and Memelink, J. (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol. Biol. 43, 495–502.PubMedCrossRefGoogle Scholar
  42. 42.
    Ke, J., Khan, R., Johnson, T., Somers, D. A., and Das, A. (2001) High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep. 20, 150–156.CrossRefGoogle Scholar
  43. 43.
    Kuraya, Y., Ohta, S., Fukuda, M., et al. (2004) Suppression of transfer of non-T-DNA “vector backbone” sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol. Breed. 14, 309–320.CrossRefGoogle Scholar
  44. 44.
    Hanson, B., Engler, D., Moy, Y., Newman, B., Ralston, E., and Gutterson, N. (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J. 19, 727–734.PubMedCrossRefGoogle Scholar
  45. 45.
    Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174.PubMedCrossRefGoogle Scholar
  46. 46.
    Ow, D. W. (2001) The right chemistry for marker gene removal? Nat. Biotechnol. 19, 115–116.PubMedCrossRefGoogle Scholar
  47. 47.
    Hamilton, C. M. (1997) A binary-BAC system for plant transformation with highmolecular-weight DNA. Gene 200, 107–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu, Y.-G., Shirano, Y., Fukaki, H., et al. (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA 96, 6535–6540.PubMedCrossRefGoogle Scholar
  49. 49.
    Tao, Q. and Zhang, H.-B. (1998) Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Res. 26, 4901–4909.PubMedCrossRefGoogle Scholar
  50. 50.
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu, J., Oger, P. M., Schrammeijer, B., Hooykaas, P. J. J., Farrand, S. K., and Winans, S. C. (2000) The bases of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895.PubMedCrossRefGoogle Scholar
  52. 52.
    Hooykaas, P. J. J. and Schilperoort, R. A. (1984) The molecular genetics of crown gall tumorigenesis. Adv. Genet. 22, 209–283.PubMedCrossRefGoogle Scholar
  53. 53.
    Koncz, C., Németh, K., Pédei, G. P., and Schell, J. (1994) Homology recognition during T-DNA integration into the plant genome, in Homologous Recombination and Gene Silencing in Plants (Paszkowski, J., ed.), Kluwer Academic, Dordrecht, pp. 167–189.Google Scholar
  54. 54.
    Koncz, C., Martini, N., Szabados, L., Hrouda, M., Bachmair, A., and Schell, J. (1994) Specialized vectors for gene tagging and expression studies, in Plant Molecular Biology Manual (Gelvin, S. and Schilperoort, B., eds.) Kluwer Academic, Dordrecht, pp. 1–22.Google Scholar
  55. 55.
    An, G., Watson, B. D., Stachel, S., Gordon, M. P., and Nester, E. W. (1985) New cloning vehicles for transformation of higher plants. EMBO J. 4, 277–284.PubMedGoogle Scholar
  56. 56.
    Bevan, M. W., Flavell, R. B., and Chilton, M.-D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.CrossRefGoogle Scholar
  57. 57.
    Waldron, C., Murphy, E. B., Roberts, J. L., Gustafson, G. D., Armour, S. L., and Malcolm, S. K. (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol. Biol. 5, 103–108.CrossRefGoogle Scholar
  58. 58.
    Frisch, D. A., Harris-Haller, L. W., Yokubaitis, N. T., Thomas, T. L., Hardin, S. H., and Hall, T. C. (1995) Complete sequence of the binary vector Bin 19. Plant Mol. Biol. 27, 405–409.PubMedCrossRefGoogle Scholar
  59. 59.
    De Block, M., Botterman, J., Vandewiele, M., et al. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.PubMedGoogle Scholar
  60. 60.
    Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S. G., Brunstedt, J., and Okkels, F. T. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4, 111–117.CrossRefGoogle Scholar
  61. 61.
    Hille, J., Verheggen, F., Roelvink, P., Franssen, H., van Kammen, A., and Zabel, P. (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol. Biol. 7, 171–176.CrossRefGoogle Scholar
  62. 62.
    Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C., and Mullineaux, P. (1990) Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15, 127–136.PubMedCrossRefGoogle Scholar
  63. 63.
    Tamura, K., Kimura, M., and Yamaguchi, I. (1995) Blasticidin S deaminase gene (BSD): a new selection marker gene for transformation of Arabidopsis thaliana and Nicotiana tabacum. Biosci. Biotechnol. Biochem. 59, 2336–2338.PubMedCrossRefGoogle Scholar
  64. 64.
    Lee, K. Y., Townsend, J., Tepperman, J., et al. (1988) The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7, 1241–1248.PubMedGoogle Scholar
  65. 65.
    Olszewski, N. E., Martin, F. B., and Ausubel, F. M. (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 16, 10765–10782.PubMedCrossRefGoogle Scholar
  66. 66.
    Eichholtz, D. A., Rogers, S. G., Horsch, R. B., et al. (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somat. Cell Mol. Genet. 13, 67–76.PubMedCrossRefGoogle Scholar
  67. 67.
    Carrer, H., Staub, J. M., and Maliga, P. (1991) Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Mol. Biol. 17, 301–303.PubMedCrossRefGoogle Scholar
  68. 68.
    Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M. (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317, 741–744.CrossRefGoogle Scholar
  69. 69.
    Ebinuma, H., Sugita, K., Matsunaga, E., and Yamakado, M. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA 94, 2117–2121.PubMedCrossRefGoogle Scholar
  70. 70.
    Svab, Z., Harper, E. C., Jones, J. D. G., and Maliga, P. (1990) Aminoglycoside-3&”-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol. Biol. 14, 197–205.PubMedCrossRefGoogle Scholar
  71. 71.
    Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303, 209–213.CrossRefGoogle Scholar
  72. 72.
    Weeks, J. T., Koshiyama, K. Y., Maier-Greiner, U., Schäeffner, T., and Anderson, O. D. (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci. 40, 1749–1754.CrossRefGoogle Scholar
  73. 73.
    Goddijn, O. J. M., van der Duyn Schouten, P. M., Schilperoort, R. A., and Hoge, J. H. C. (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22, 907–912.PubMedCrossRefGoogle Scholar
  74. 74.
    Haldrup, A., Petersen, S. G., and Okkels, F. T. (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37, 287–296.PubMedCrossRefGoogle Scholar
  75. 75.
    Gough, K. C., Hawes, W. S., Kilpatrick, J., and Whitelam, G. C. (2001) Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: a novel enzyme-based selectable marker for plant transformation. Plant Cell Rep. 20, 296–300.CrossRefGoogle Scholar
  76. 76.
    Streber, W. R. and Willmitzer, L. (1989) Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Biotechnol. 7, 811–816.CrossRefGoogle Scholar
  77. 77.
    Stalker, D. M., McBride, K. E., and Malyj, L. D. (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242, 419–423.PubMedCrossRefGoogle Scholar
  78. 78.
    You, S.-J., Liau, C.-H., Huang, H.-E., et al. (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection, marker for orchid transformation. Planta 217, 60–65.PubMedGoogle Scholar
  79. 79.
    Li, X., Volrath, S. L., Nicholl, D. B. G., et al. (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol. 133, 736–747.PubMedCrossRefGoogle Scholar
  80. 80.
    Kunze, I., Ebneth, M., Heim, U., Geiger, M., Sonnewald, U., and Herbers, K. (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol. Breed. 7, 221–227.CrossRefGoogle Scholar
  81. 81.
    Teeri, T. H., Lehväslaiho, H., Franck, M., et al. (1989) Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J. 8, 343–350.PubMedGoogle Scholar
  82. 82.
    Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  83. 83.
    Ludwig, S. R., Bowen, B., Beach, L., and Wessler, S. R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247, 449–450.PubMedCrossRefGoogle Scholar
  84. 84.
    Simmonds, J., Cass, L., Routly, E., et al. (2004) Oxalate oxidase: a novel reporter gene for monocot and dicot transformations. Mol. Breed. 13, 79–91.CrossRefGoogle Scholar
  85. 85.
    Brandizzi, F., Fricker, M., and Hawes, C. (2002) A greener world: the revolution in plant bioimaging. Nat. Rev. Mol. Cell. Biol. 3, 520–530.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Toshihiko Komari
  • Yoshimitsu Takakura
  • Jun Ueki
  • Norio Kato
  • Yuji Ishida
  • Yukoh Hiei

There are no affiliations available

Personalised recommendations